
p,- WRDC-TR-89-1150

SANALYSIS

< OF PHASE RETRIEVAL
IN ACTIVE IMAGING

J.R. FIENUP
Environmental Research Institute of Michigan
Advanced Concepts Divison
P.O. Box 8618
Ann Arbor, MI 48107-8618

FEBRUARY 1990

Final Report for Period August 1986 - November 1988

Approved for public release;, distribution unlimited 1:

Avionics Laboratory
Wright Research and Development Center
Air Force Systems Command
Wright-Patterson Air Force Base, OH 43433-6543

90 06 04 108



HIS CLAIMEI I
\ ,4c"-,

THIS OCUIMEN iS BEST

QUALITY AVAILABLE. T1" COPY

FURNISHED TO DTIC CONTAINED

A S.IGNIFICANT NUMBER OF

C E3S 71 H.ICH DO NOT

REPRODUCED FROM
BEST AVAILABLE COPY



NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection vith a definitely Government-related
procurement, the United States Government incurs no responoibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

ROBERT H. FETNER, Capt, USA`- DONALD L. TOMLINSON, Chief
Project Engineer Electro-Optics Techniques Group
Electro-Optics Techniques Group Electro-Optics Branch
Electro-Optics Branch

FOR THE COMMADER

GALE D. URBAN, Chief
Electro-Optics Branch
Mission Avionics Division

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WRDC/AARIr2WPAFB, OH 45433- 6543 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.



UNCLASSIFIED
SULiiPIrY CLASSIFICATION OF aPAGE

REPORT DOCIJMENTATION PAGE FMBorm Approvo
Iia Il1l11)IiI SIOURHIY CLASSIf ICA1ION lbi. RESTRICTIVE MARKINGS

Uncl ssi ied(none)
2;1 SFCURinry CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
'Ih OUii ASSIFICAI ION/DOWNGRADING SCHEDULE distribution unlimited

4 111( IIIUIIINU IIRU1ANI/A I ION Ifl-LIlU~ I NIJMflI.II!;(S) 6 MONI IOIIIING UIIGANII/AII N 111.1'O01 I NUMIII.I(S)

167400-133-F WRDC-TR-89-1150

# Ga NAimiL OF PERFORMING ORGANIZATION f6b. OFFICE SYMBOL 7R. NAME OF MONITORING ORGANIZATION
Environmental Research (it IppIiosiole) Avionics Laboratory (WRDC/AARI)
Institute of Michioan IWright Research and Developmient Center

6 c. ADDRESS (City. Stale, and ZIP Code) 7b. ADDRESS (City, Slits, and ZIP Woe)
P.O. Box 8618 Wright-Patterson AFB, OH 45433-6543
Ann Arbor, MI 48107

Bu. NAME OF FUNDING /SPONSORING 8 b, -OFFICE SYMBOLI 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Air Force j il' applicable)

Wepn aoaoy AROB F33615-83-C-1046
8c. ADDRESS (City, Slow,, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Kirlan A~3, M 8117600RELMEN NO NO IR~ TASK WORK UNI7
Kitln RN 811- 08ALMEN PR- oJEC NO. ACCESSION NO.

61101F ILIR 83 05
II. rIlLL (Inculude Socurlly ClaassIicBoton)

Analysis of Phase Retrieval in Active Imaging
'2. PERSONAL AUTH4OR(S)

J.R . rienup _ 3 ,T M O E E1311 IYPE OF REPORT 13b TIECVEE14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final- Technical IFnoWL1~LA8To1L 7A 8  1990 February16
16. SUPPLEMENIARY NOTATION

-This research was partially funded by the in-house independent research fund.

It. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it nocessery and lidntity by block number)
FIEL.D GROUP SUB-GROUP Phase Retrieval Atmospheric turbulence
ý10 06 Image reconstruction Intensity interferometry
10 1 Speckle Imaging correlography

19. ABSTRACT (Continue on reverse It necessaery'and Identity by block numbeir)
This report describes a collection of research tasks which develop techniques to
reconstruct fine-resolution images of satellites coherently illuminated by lasers
Two major imaging modes were developed. In the first, called imaging correlog-

* raphy, an Incoherent image of the coherently illuminated target Is reconstructed
from Inultiple realizations of the Intensity of the nonimaged (aperture-plane)
laser speckle pattern backscattered from the target. In the second mode, a

* coherent image of the target is reconstructed from a single realization of the
nonimag'ed laser speckle pattern. In the latter mode, reconstruction methods were
developed for the case of a target which contains a strong glint (or glints) and
for the case in which one has partial information about the phase of the optical
field backscattered by the target.

?2u NAME OF RESPONSIBLE INDIVIDUAL 22h. TELEPHONE (Include Area od)22c. OFFICE SYMBOL

00 Form 1473, JUN0 83Provious edit/ons arc obsolote. VNCLbA.IE~p.~..
UIOIM ii O F11.IAITY 11.1 AqP.IrI!A THIN M1 I HICZ' PAUI
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Project Monitor was Lt. Robert Fetner and the Program Manager was Mr.

William Martin. At AFWL/AROB, the Program Manager was Maj. Paul S.
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This final technical report covers research performed from I August

1986 to 7 November 1988, during which time there were three successive

associated efforts. (For the sake of readability this report describes

all three efforts together, covering topics in a logical rather than
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1.0 INTRODUCTION

To obtain useful images of satellites from the ground,;large

apertures are needed. According to the laws of diffraction, to obtain
a resolution p at a range-to-target R with light of wavelength X, an

aperture of diameter about D - XR/p is required. At optical or near-
infrared wavelengths, we would therefore need an aperture on the order

of nne meter in diameter for low-altitude earth-orbiting satelli.te, and
an aperture the size of a football field for geosynchronous satellites.

Conventional telescopes fall to achieve this for two reasons. First,
for the case of high-altitude satellites, the required large apertures

are well beyond the current state of the art. Second, for all cases,

atmospheric turbulence limits the resolution to an effective aperture
diameter of r0 (Fried's parameter), which is typically in the range of

0.05 to 0.20 meters, a small fraction of what. is needed. Compensated

imaging systems, consisting of wavefront sensors coupled with adaptive

optics to correct for atmospheric turbulence in real-time, may work

well for the low-altitude case, but that technology does not scale well

for the high-altitude case.

This report describes new methods we have developed for

reconstructing fine-resolution images of satellites which circumvent

both the problems of atmospheric turbulence and obtaining large

apertures with today's technology. These-methods are also advantageous
because they employ the simplest, least expensive receiver possible.

Hardware complexity is minimized, however, at the expense of software

complexity and computing requirements. This trade-off is increasingly
advantageous as computers have. been evolving. much faster thanoptics

and detectors. We have also developed methods that take data from
sensors based on other imaging concepts L.nd reduce the phase errors

that are present in the data.
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While, in this report, we concentrate on the problem of i:maging
satellites, the methods described here can also be used for other

applications such as SDI discrimination and tactical imaging.

The assumed optical system for the majority of this report is as

follows. A pulsed laser of long coherence length 1l1um'naites the
target object', The intensity 'of' the backscattered radiation is
detectedby an.array of simple light-bucket detectors on the ground,
distributed over an area of diameter, D. Alternatively, for the low-
altitude case, the radiation can be collected by a tqleScope, but the
detector array is placed in a plane, conjugate to 'I.e. at an image of)
-the aperture plane, rather than in the usual focal p'ane.

Since the phase errors due to atmospheric'turbulence are introdueod
in'.a-WVlume relatively"near to the aperture plane, the detected
intens.ities are, to first -order, unaffected by the atmospheric

.turbulence. (The 'intensity is affected only to the extent that
scintillation, caused by strong upper-atmospheric turbulence, is

present.) If the phase associated with the intensities could be
retrieved, then by digitally back-propagating the wavefront at the
aperture-plane to a plane at the target object (essentially a Fourier
transform), we could obtain a diffraction-limited image. This image

.would be complex-valued and would suffer from speckle. Since the
..realization of the image speckle pattern would change for each laser
pulse (as the object rotates slightly or translates), by averaging over
the intehsitiesof several such images we can average out hhe speckles
and obtain the equivalent of an incoherent, speckle-free image of the
object. The required phases can be computed using one of the phase-
retrieval (image' reconstruction) algorithms developed under this
effort. They require either a glint or glints to Ls present on the
object or to have measured partial information about the phase of the
wavefront in the aperture plane.
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In a second imaging mode, the multiple realizations of the
aperture-plane intensities can be averaged so as to obtain the modulus
(magnitude) of the Fourier transform of the incoherent image. Again,
by the phase retrieval algorithm, the phase of the Fourier transform
can be retrieved, allowing the reconstructicn of a diffraction-limited
incoherent image. We have called this latter mode "Imaging
correlography." It has the advantage of working under much broader
circumstances (no glints or partial phase are required), but has the
disadvantage of requiring a large number of.laser pulses to build up a
sufficient signal-to-noise ratio.

This report describes the techniques developed for these two novel
imaging modes and phase-error correction techniques that can be applied
to other imaging sensors. It also describes several associated topics,
including the comparison of several competing imaging approaches.

In overview, the imaging approaches we have developed, which
utilize phase retrieval algorithms, make possible the reconstruction of
fine-resolution images of satellites using hardware technology that is
available today. The approaches require only light-bucket detectors
which require oo phasing and do not have to be very fast. The cost of
such a system would be a small fraction of the cost of m!ost competing
approaches. Alternatively, improved images can be obtained from other
imaging sensors by correction of residual phase errors.

Section 2 of this report contains a brief summary of the research
accomplishments. Individual topics are described in detail in Sections
3 to 8. References are found at the end of each section.
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2.0 SUMMARY OF ACCOMPLISHMENTS

In this section, we briefly summarize the accomplishments of our

research on active imaging. Details are given in the sections that

follow.

As described in Section 3, we developed a new imaging modality

called imaging correlography. In it., multiple arrays..ofaperture-plane
intensity measurements of laser pulses backscattered by the object are

collected. By averaging over the autocovariances of these intensity
measurements, we arrive at an estimate of the squared modulus of the

Fourier transform of the incoherent object (the object reflectivity.

function for incoherent illumination). From these data, a fine-
resolution nonspeckled image can be reconstructed using the iterative
Fourier transform (phase retrieval) algorithm.

The babic theory of imaging correlography was developed, Averaging

in both the aperture plane and the Fourier transform of the aperture

plane were analyzed. Multiple realizations of complex-valued, laser.

illuminated reflectivity functions of a satellite model were computer

simulated, and the aperture-plane data were simulated. The averages
were computed, and Wiener filtering of the resultant Fourier modulus

estimates was performed. Images were reconstructed from these data for

various numbers of frames (laser pulses). When a large number of

frames were processed, high-quality, fine-resolution images were

successfully reconstructed.

The same experiments were repeated for the case of a sparse

collecting array consisting of a Golay arrangement of six subapertures.

The ability of Wiener filtering to correct for the effects of the MTF
of the sparse array and the ability to reconstruct fine-resolution
images were demonstrated.

I I I I I5



The signal-to-noise ratio (SNR) of the simulated correlography

data was measured and compared with-theoretical predictions, and it'was

found that they generally agreed well with one another. The number of
frames of data required to achieve a given resolution for a particular
image of a satellite model was determined. However, this result

depends on the spatial-frequency content of the object. The effect of

photon noise for low lioht'levels was analyzed, ard it was found that
the effects of photon noise are small as long as the number of photuns
*per speckle per'frame is much greater than two. Alternative Wiener

filters for Improving the SNR were ddrived, and an itterative filtering

method was suggested.

As described in Section 4, derivations of the results' of
,noneohereht averaging of images and of the correlography quanities 'for

the case of a mixed object were performed. By a mixed object we mean a
coherently illuminated object that has both a fixed, deterministic
compoeent (such as a glint Mr glints) anda random, diffuse:'omponent.
It 'was found that if the deterministic component of'he object consists
of a:single glint (a fairly common occurance), then the triditional
correlography estimators give an incorrect answer; however, a new
estimator, denoted as <1112 - I" + 12>, or <1112 - Var(1)>, gives the
correct answer. 'This new estimator also gives the correct answer when
no glint is present.

As....described in Section 5, methods were , developed for
reconstructing a coherent image from a single frame of aperture-plane
intensity data when the object has 'one or more glints. The most
successful mlethod is effective for the most difficult case -. when the
object has multiple glints not spatially separated from the diffuse
component. It consists of three successive algorithms: (1) an
autocorrelation trn-intersection algorithm that determines the glint
positions and values; (2) the AF-synthesis algorithm that produces a

6



partially-reconstructed image; and (3) the iterative Fourier transform
algorithm, which completes the reconstruction of a fine-resolution
Image. This method was demonstrated to reconstruct. fine-resolution
Images from computer-simulated data. The effect of noise was.computer-
simulated, and the sensitivity of the method to photon noise and to
glint strength was determined by computer reconstruction experiments.

Other coherent reconstruction approaches for the case of objects
having glints were also investigated. Reconstructions were
successfully performed using only the iterative Fourier transform
algorithm for the cases of one and two glints on the object. A,

recursive reconstruction algorithm based on the autocorrelation of the
object (which can be computed from the aperture-plane intensity data)
was developed for the case of a single glint on the object, The
effects of large glints on the quantization error when detecting the

intensity data were analyzed. We found that the quantization error
could be greatly reduced by having an automatic gain control that would
scale down the detected intensity when a very large glint would appear.
A variable zero-offset was found to be useful to a lesser extent,

As described in Sections 6 and 7, methods were developed for
reconstructing a coherent Image from a single frame of aperture-plane
intensity data when partial information about the phase of the optical
field is available. These methods are also effective when we have
partial phase information for the case of incoherent-image
reconstruction as well.

As described in Section 6, a new variation of the iterative Fourier
transform algorithm, called the expanding weighted modulus algorithm,
was developed. It can be applied when the Fourier phase is known well
over a small aperture, but is unknown over the large, full aperture.
It involves iterating with progressively larger weighting functions

7



imposed on the Fouriei' modulus data, reconstructing progressively
finer-resolution images, effectively bootstrapping from the phase dver
the small aperture to the phase over the large aperture. The image-
domain constraint used for the iterative transform algorithm is a
support (finite extent) constraint.

A second case, reconstruction from one bit of phase knownover the
entire aperture, was also Investigated. When the object is "causal"
(i.e., is entirely to one side of the optical axis), then the image can
be reconstructed easily by a windowing operation and the iterative
transform algorithm.

A third case is where the phase is known poorly over the entire
aperture, or, equivalently, a noisy phase exists over the entire
aperture. This would be the case if we use any other imaging method
that results in phase errors. For this case, another variation of the
iterative transform algorithm, called the phase variance algorithm, was
developed. In it, the given Fourier modulus, which is assumed to be
measured with a higher SNR, is reinforced exactly, but the given
Fourier phase is reinforced inexactly; it is allowed to wander from the
measured phase in accordance with the standard deviation of the error
of the phase. Appropriate data were simulated and reconstruction
experiments were performed. For the case of incoherent images (for
which one has a nonnegativity constraint), the phase variance algorithm
converges faster to the solution than the traditional algorithm. For
the case of coherent images, the phase variance algorithm produced
images of significantly better quality than that given by the noisy
measured phase, but left room for further improvement. Thus, the phase
variance algorithm should be used'to clean up images produced by other
imaging methods. Investigation of the effect of photon noise on the
Fourier modulus data was performed by computer simulation and
reconstruction experiments. It was shown that if the Fourier modulus

8



data are sufficiently noisy, then the phase variance algorithm no
longer improves the image. A further algorithm improvement was
suggested: allow both the modulus and phase to vary from their measured
values, each in accordance with the variance of the noise on that data.
Then in the areas of spatial-frequency space where the modulus is less
noisy than the phase, the phase is improved by reinforcing the modulus;
and in the areas where the phase is less noisy than the modulus, the
modulus is improved by reinforcing the phase.

As described in. Section 7, another method of correcting phase
errors over the entire aperture was developed. Called 2-D shear
averaging, it corrects phase errors using a priori information about
the statistics of the coherent object -- that it is delta-correlated --
rather than the usual object-domain support constraint. The algorithm

is computationally simple, consisting of three steps, First, phase-
error differences in each of the two dimensions are estimated from the
summation over a sheared product of the given Fourier transform. The
derivation of this result is similar to that of the shearing-
interferometer wavefront sensor. Next, the phase error Is computed

from the phase-error differences by a recrusive method, such as those
employed for wavefront sensing or Knox-Thompson image reconstruction.
Complex exponentials are employed to avoid phase unwrapping
difficulties. Finally, the phase-error estimate is subtracted from the
given Fourier phase to yield a corrected Fourier transform. Inverse
transformation yields the corrected image. Several versions of the
algorithm, differing in the way that the sheared product is averaged,
were studied. Analysts was performed to predict the residual phase
errors left by this statistically-based algorithm. Data with a variety
of phase errors were digitally simulated and image reconstruction
experiments were performed. For smooth but higher-order 2-D phase
errors the 2-D shear averaging algorithm was shown to improve the image
quality substantially, although there was room for further image-

9



quality improvement. Thus, the 2-0 shear averaging alg6rithm thould be
used to clean up images produced by other imaging methods'when the
phase errors are slowly varying.

As described in Section 8, several different classes of imaoing
systems appropriate for imaging satellites were briefly compared,
including both active and passive approaches. Several methods for
obtaining firo-y•solution images, besides the conventional methodd of
compensated ' tg and microwave synthetic-aperture radar, appear to
show promise. One good example of a novel approach is an array of
sensors, each consisting of a dual-plane detection of laser radiation
plus a wavefront sensor. This approach employs, a robust form of phase
retrieval to determine the optical field in the aperture plane from two
arrays of intensity data without requiring heterodyne detection. The
.wavefront sensor, operating on incoherent light, determines the
'wavefront error due to atmospheric turbulence. The phase of the latter
is subtracted from the phase of the former to yield the phase 'due to
the object alone.

In summary, 'several different approaches to reconstructing fine-
resolution images of satellites, using rilatively simple receivers,
were developed. These methods could make possible imaging systemi of
greatly reduced cost and complexity compared with compensated imaging
(using adaptive optics). They tend to scale well for the case'of'deep-
space objects, for which the receiver array must be much larger than
any existing optical telescope.
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3.0 IMAGING CORRELOGRAPHY

In this section, the new imaging method we call imaging

correlography is described. It makes use of multiple realizations of

the intensity of the coherent optical field, backscattered from the
object, measured in the aperture plane, to arrive at an Incoherent
image of the object. The basic concept is described in Section,3.1.
The method is demonstrated for sparse arrays of detectors in Section
3.2. The signal-to-noise ratio achieved in computer simulation is
compared with theory in Section 3.3. Wiener filtering Issues are
further discussed in Section 3.4. Correlography for a "mixed" object,
i.e. one having a deterministic (glint) component as well as a diffuse
component, is described in Section 3.5, where it is shown that a new
estimator is required.

3.1 IMAGING CORRELOGRAPHY THEORY AND RESULTS

It is well known that the spatial structure of a fully developed

laser-speckle pattern -- produced by the coherent interference of light
backscattered from a sufficiently diffuse, reflecting surface -. is
dependent on the macroscopic features of the illuminated surface [3,1].
In this Chapter we demonstrate that measurements of the backscattered
speckle intensity are sufficient to (uniquely) reconstruct a high-

resolution, unspeckled, Incoherent image (or brightness distribution)

of the coherently Illuminated object.

Our approach to image synthesis Is based on the fact that from the
average energy spectrum of a laser-speckle intensity pattern we can
obtain the autocorrelation function of the illuminated object's

brightness distribution [3.2]. Here, the object's brightness

distribution corresponds to the object's reflectance function or,

alternatively, to its irradiance distribution had the object been
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illuminated by an incoherent light source. Since the Fourier transform
of the autocorrelation of the object brightness function is equivalent
to the squared modulus of the Fourier transform of the brightness
function [3.3), an image of the object can be obtained if the phase
associated with this Fourier transform can be determined, Fortunately,
a practical solution to this phase-retrieval problem has been
demonstrated by Fienup [3.4-3.6], in which an iterative transform
algorithm can be used to recover the phase associated with the modulus
of the Fourier transform of a real, nonnegative object function,
provided that certain boundedness and nonnegativity constraints are
continually reinforced throughout the iteration process. The iterative
transform algorithm, together with certain digital preprocessing
operations (which are described below) permit us to recover complete,
unspeckled images from nonimaged speckle data.

Let us suppose that a diffuse object is flood illuminated with a
laser whose coherence length is at least twice as long as the object is
deep. An array of photodetectors measures the backscattered light
intensity in a far-field plane some distance -from the object. We
assume that the object is optically rough, so that its microscale
surface height variations are random and comparable in size with the
wavelength of light. This being the case, the reflected laser light is
randomly (and coherently) dephased, and the photodetectors in the
observation plane record a fully developed laser-speckle pattern.

Each realization of the observed speckle intensity In(u) may be
expressed as the squared modulus of the Fourier transform of the
complex object field:

In(U) - IFn(u) 2, IY{tn(X)}1 2  (3-1)
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where 7 denotes a Fourier transform, In(x) - I/o(X)l2 exp[i~n]'! is the

field reflected by the object, I 0o(x)l is the object's field amplitude
reflectivity, and #n(x) is the (random) phase of the nth realization of
the reflected object field associated with the object's surface height
profile. In the above expression, x represents a two-dimensional
spatial (or angular) coordinate vector in object or image space; u
represents a two-dimensional coordinate in the measurement plane. The
inverse Fourier transform of the observed speckle pattern is
proportional to the autocorrelation of the object field, which may be
written as

rn(x) - 7{IFn(U)l H(u)}

a [4n(x) * In(x)] * h(x) (3-2)

where I" denotes an inverse Fourier transform, * denotes a convolution
operation, and 0 denotes an autocorrelation. The aperture function
H(u) denotes the region of the measurement plane over which the speckle
pattern is observed: H(u) a I for points within the measurement
aperture, and H(u) a 0 elsewhere. The function h(x) - r'l{H(u)} is the
(diffraction-limited) coherent impulse response; hence rn(x) is a
diffraction-limited (albeit speckled) autocorrelation of the laser.
illuminated object.

Using the iterative transform algorithm, one could attempt to
reconstruct a complex-valued, speckled Image of ni(x) from IFn(u)1 2

H(u) or equivalently from rn(x). However, at present the practical
reconstruction algorithm Is effective only for certain classes of
complex-valued objects if the object's support is known a priori [3.7]
and for even more restrictive classes of complex-valued objects if the
object support is unknown. (The support is the closed set of points
outside which the object Is zero.) Such cases are described in Section

13



4. In this section,, we concentrate on a method that allows us to
reconstruct a real, nonnegative image -- a case for which the iterative
transform algorithm is effective for a broad class of objects.

Image recovery begins by estimating the average energy spectrum of
the observed speckle pattern by averaging together the squared moduli
of many independent speckled autocorrelations rn(k). This may be
referred to as noncoherent averaging of the coherent autocorrelations.
Independent realizations of the speckle pattern can be obtained, for
example, by laterally displacing the observation plane with respect to
the object or by measuring the speckle pattern for slightly different
rotations of the object. We can show that as the number N of
independent speckle realizations increases, the computed average energy
spectrum converges to [3.8)

lim N"1 x. )rn(X)12 _ blh(x)1 2 + cro(x) * Ih(x)12 (3-3)
N4*

where

b c[ 4 If o(x)l2 d2x'] (3-4)

is the square of the total measured irradiance,

ro(x) - Ilo(x)l2 2 Ilo(x)l 2  (3-5)

is the autocorrelation of the object brightness function, and c is a
constant. Thus the.average energy spectrum converges to the sum of an
autocorrelation of the desired incoherent image plus a dc term
blh(x)l2, where the dc term is simply the (incoherent) pointspread

function of the collecting aperture, possessing a strength b. On

subtracting the dc term from the averaged energy spectrum, we obtain a
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diffraction-limited autocorrelation of the incoherent object. The
square root of the Fourier transform of this incoherent object

autocorrelation, then, provides us with an estimate of the modulus of
the Fourier transform of the object's brightness function. Note that
one can obtain the same results by subtracting a bias from an average

of the autocorrelations of In(u) and then taking the square root. One
can see that the latter approach is analogous to a highly redundant,

multichannel intensity interferometer [3.9]. This latter approach is
described in more detail in Section 3.2.

We conducted a series of computer experimonts to demonstrate that
phase retrieval can be used to recover imagery from speckle data
processed in this way. Original object data for these experiments were
contained in a digitized photograph of a satellite model illuminated
with incoherent light. These, data comprised approximately 40 x 60
pixels embedded in a 128 x 128 discrete array, Each realization of a
coherent (speckled) image of the object was obtained from the digitized
photograph by (1) replacing each pixel with'a circular-complex Gaussian
random variable whose real and imaginary parts possessed variances
equal to half of the pixel intensity value and (2) low-pass filtering
the result. The filter used to smooth the complex object data
corresponds to the aperture function H(u), which was represented by a

64 x 64 square of detector pixels embedded in 128 x 128 array.
Multiple realizations of the coherent object data were obtained by
using different random-number seeds in the computation of the complex
Gaussian random variables. Each coherent image autocorrelation rn(x)
was computed by inverse Fourier transforming the squared modulus of the
apertured Fourier transform of the simulated coherent image. Averages
of both the speckled autocorrelations and their squared moduli (i.e.,

the energy spectrum of the speckle-intensity patterns) were then taken.
A function proportional to the square of the former, an estimate of the
dc term, was subtracted from the latter (the noncoherent average) to
arrive at an estimate for the autocorrelatlon of the incoherent image.
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The process of noncoherently averaging object-field
autocorrelations and subtracting the dc term is illustrated in Pig.
3-1. The first column contains averages of the squared inverse Fourier

transforms of N simulated speckle measurements providing estimates of
the speckle energy spectrum, where N is the number of independent
speckled autocorrelations noncoherently averaged. The second column
shows the corresponding dc term, which, for the case of a square
aperture, is a squared sinc(x) [i.e., (rx)"1 sin(rx)] function. The
third column shows the results when the dc term is subtracted from the
noncoherently averaged autocorrelations of the first column. Note that
the speckle artifacts in the averaged autocorrelations (in the first
and third columns of Fig. 3-1) disappear as N increases.

The incoherent autocorrelation estimate (with the dc term removed)
was then Fourier transformed, and the square root was taken, to arrive
at an estimate of the modulus of the Fourier transform of the object
brightness function. Negative numbers, resulting from noise associated
with the finite-average approximation to an ensemble average, were set
to zero before the square root was taken. Images were reconstructed

from the Fourier modulus estimates by using the iterative Fourier-
transform algorithm [3.5, 3.6], using several cycles of the hybrid
input-output algorithm (using p - 0.7) and the error reduction
algorithm until the algorithm appeared to stagnate. The object-domain
constraints used were nonnegativity (since an incoherent image is being
reconstructed) and a loose support constraint (a rectangle half the
size of the smallest rectangle enclosing the autocorrelation).

Data along the first row of Fig. 3-2 illustrate a direct
application of the phase-retrieval algorithm to the Fourier modulus
estimate. Figure 3-2(A) represents the dc-subtracted autocorrelation
for N - 104 independent speckle patterns. Figure 3-2(B) shows the
corresponding Fourier modulus data produced by Fourier transforming the
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FIGURE 3-1. ESTIMATING THE ENERGY SPECTRUM OF SPECKLE INTENSITY BY
NONCOHERENTLY AVERAGING MANY COHERENT SPECKLED IMAGE AUTOCORRELATIONS.
(A) Noncoherent average of N = 4 autocorrelations; (B) estimate of dc
term; (C), (A) minus (N); (D)-(F) N = 32; (G)-(I) N - 128; (J)-(L) N
1024.
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FIGURE 3-2. IMAGE RECOVERY FROM NONCOHERENTLY AVERAGE AUTOCORRELATION
DATA (N N 10,000, FILLED APERTURE). (A) DC-adjusted, noncoherently
averaged autocorrelations, (B) estimate of the Fourier modulus of the
incoherent object, (C) image reconstructed from (B)'using the iterative
transform (phase-retrieval) algorithm, (D) Wiener filter, (E) filtered
Fourier modulus estimate, (F) image reconstructed from (E), (G)
original incoherent object, (H) Wiener filtered, incoherent object, (I)
result of Wiener filtering (C).
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averaged autocorrelation [Fig. 3-2(A)] and then taking, the square root.
Figure 3-2(C) is the reconstructed image produced by applying the
phase-retrieval algorithm as outlined above. Note that this image is
very noisy compared with the original incoherent object, shown in Fig.
3-2(G). Noise in the reconstructed image is due to the fact that a
finite number of speckle realizations were used to estimate the Fourier
modulus. To reduce these noise effects, we multiplied the Fourier
modulus estimate [Fig. 3-2(B)] by a Wiener filter of the form

W(hu) . OTF(Au) E5 (Au)
IOTF(A)1 2 Es(Au) + En

where OTF(Au) - H(u)SH(u) is the optical transfer function of the
receiver aperture, Es(Au) is an average energy spectrum for objects of
this type (estimated by taking an angular average over the squared
Fourier modulus of the object), and En is the energy spectrum of the
noise. We approximated En by a constant whose value was obtained'by
averaging the squared Fourier modulus estimate over those higher
spatial frequencies where the signal-to-noise ratio was less than one.
Figure 3-2(D) shows the Wiener filter used for this example.

Figure 3.2(E) shows the filtered Fourier modulus estimate equal to
the product of Figs. 2(8) and 2(D). Figure 3-2(F) shows the Itdge
reconstructed from the Wiener-filtered Fourier modulus estimate using
the phase-retrieval algorithm. Note that the Wiener filter has
significantly improved the quality of the reconstructod image in Fig.
3-2(F) over that in Fig. 3-2(C) reconstructed without Viener filtering.
For comparison, the original object [shown in Fig. 3,2(G)] was passed
through the Wiener filter of Fig. 3-2(D), with the result shown in Fig.
3-2(H). The image reconstructed from speckle-correlation measurements,
shown in Fig. 3-2(F), compares favorably with the filtered object [Fig.
3-2(H)], lndicatit.g good performance on the part of the iterative
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transform reconstruction algorithm. Finally, Fig. 3-2(I) shows the
result of applying the Wiener filter to the reconstructed image shown
in Fig. 3-2(C). Apparently, Wiener filtering followed by image
reconstruction is superior to image reconstruction followed by Wiener
filtering.

These results demonstrate the possibiity of recovering images from
nonimaged laser speckle patterns: by averaging over many realizations
of the coherent (speckle) intensity data, an estimate of the
autocorrelation and Fourier modulus 'of the incoherent object can be
obtained. And, from the Fourier modulus estimate, it is possible to
reconstruct an unspeckled image by applying a phase-retrieval algorithm
with a nonnegativity constraint.

Figures 3-3 and 3-4 show results similar to those in Fig. 3-2, ,but
for a smaller number of realizations, N, of the speckle patterns.
Figure 3-3 shows the case for N - 1024 realizations and Figure 3-4 the
case of N - 128 realizations. As expected,, the image quality decreases
with fewer number of speckle frames due to the statistical noise
associated With a finite number of frames. Section 3-3 will discuss in
greater detail the signal-to-noise issues.

Since these computer simulations were performed, laboratory
experimental verification of imaging correlography has also been
accomplished [3.10].

This section is an expansion of Reference 3.11.
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FIGURE 3-3. IMAGE RECOVERY FROM NONCOHERENTLY AVERAGE AUTOCORRELATION
DATA (N - 1024, FILLED APERTURE). (A) DC-adjusted, noncoherently
averaged autocorrelations, (B) estimate of the Fourier modulus of the
incoherent object, (C) image reconstructed from (B) using the iterAtive
transform (phase-retrieval) algorithm, (D) Wiener filter, (E) filtered
Fourier modulus estimate, (F) image reconstructed from (E), (6)
original incoherent object, (H) Wiener filtered, incoherent object, (1)
result of Wiener filtering (C).
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FIGURE 3-4. IMAGE RECOVERY FROM NONCOHERENTLY AVERAGE AUTOCORRELATION
DATA (N - 128, FILLED APERTURE). (A) DC-adjusted, noncoherently
averaged autocorrelations, (B) estimate of the Fourier modulus of the
incoherent object, (C) Wiener filter, (D) filtered Fourier modulusestimate, (E) image reconstructed from (D), (F) original incoherent
object, (G) Wiener filtered, incoherent object.
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3.2 IMAGING CORRELOGRAPHY WITH SPARSE ARRAYS OF DETECTORS

In this section the use of imaging correlography, introduced in the

previous section, with sparse arrays of detectors is discussed and

demonstrated through digital simulations. In this case it is important

to emphasize the relationship between the aperture function shape and

the modulation transfer function (MTF) for the image. For this reason

we start with an alternative (but mathematically equivalent)

explanation of the correlography process.

Rather than relating, as we have done above in Eq. (3-3), the

average energy spectrum of the speckle pattern to the autocorrelation

function of the object's brightness function, we can equate the
autocovariance of the far-field laser speckile pattern with the energy

spectrum of the object's brightness function. This second

interpretation suggests the following procedure for image recovery:

(1) estimate the autocovariance of the observed speckle intensity, (2)

take the square root of the estimated autocovariancei (3) recover the

phase associated with this square-root, and finally (4) inverse Fourier
transform the assembled Fourier data. Image recovery using this

prescription uncovers a close relationship between imaging

correlography and image recovery from intensity interferometry [3.13],

where the object's Fourier phase information, too, is lost to the

measurement process. (The fact that Fourier domain Information of

incoherent objects can be obtained from far-field correlations is, of

course, a consequence of the Van Cittert-Zernike theorem [3.12].)

We can demonstrate the relationship between the autocovarlance of

the laser speckle pattern and the object energy spectrum by considering

the measurement process involved in imaging correlography. Let us

suppose that a diffuse object is flood illuminated with a laser so that

the object lies entirely within the coherence volume of the laser beam.
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A two-dimensional array of photodetectors measures the backscattered
light intensity in a (far-field) plane some distance z from the object
(see Fig. 3-5 for a possible measurement scenario). We assume that the
object is optically rough so that its microscale surface height
variations are random and of size comparable to or greater than the
wavelength of light. Additionally, we assume that the transverse'scale
size of the surface height fluctuations is small compared to the
resolution patch size associated with the collecting array (i.e., the
spatial correlation of surface roughness is small compared toXz/D,
where X is the wavelength of light, z is the range, and 0 is the
largest array dimension). This being the case, the reflected laser
light is randomly (and coherently) dephased and the photodetectors in
the observation plane record the intensity pattern of a fully developed
laser speckle pattern [3.1].

An estimate.of the autocovariance of the measured speckle pattern,
In [see Eq. 3-1], may be computed as follows from N'realizations of the
laser-speckle intensity:

CY(au; N) 5 n. i. H(u + Au) H(u) [In(u + Au) In(u)- 72] d2u

" H(u + Au) H(u) [In(u + Au) In(u) - 12 d2u (3-7)

-u

where T is the average intensity of the observed speckle pattern, Au is
a vector separation in the measurement plane, and H(u) is the pupil
(aperture) function associated with the collecting array, defined as

1, for u e aperture arrayH(u)-. -)
H o, otherwise
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COIERENT ILLUMINATOR OBJECT
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(LIGHT BUCKETS)

FIGURE 3-5. SENSING GEOMETRY FOR A SPARSE-ARRAY IMPLEMENTATION OFIMAGING CORRELOGRAPHY. Light fro, the laser Is expanded to flood'illuminate the target object. The backscattered laser speckleintensity is measured with light bucket detectors arranged in an* unfilled., two-dimensional array configuration.
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In the limit as N (the number of independent observed speckle patterns)
approaches infinity, one can use the moment factoring theorem for
circular-complex Gaussian (ccg) fields (3.13] to show that

1 im I~~~ •N ,•(U + AU) InU W 72 •IrlAu*2 (349)

where r(Au) - v[Ifo(x)l 2] is the Fourier transform of the object's
brightness distribution [i.e., r(Au) is the mutual intensity of the
(complex) speckle field in the measurement aperture, evaluated at field
points separated by a vector Au]. Our ability to invoke the ccg moment
theorem above follows from the fact that the observed speckle field is
ccg, since the speckle pattern is fully developed. in the limit N *-,
we therefore find from Eqs. (3-7) and (3.-9) that the estimated
autocovariance of the speckle intensity observed over the measurlm-ent
aperture H(u) Is given by

CI(Au) I 1tm N AU; N)

OTF(Au) ir(Au) 2  (3-10)

where OTF(u) is the autocorrelation of H(u). This result demonstrates
tht C(AU;N) provides an estimate for IF(Au) 2, the energy spectrum ofthat C ( u N r v d s a s i a e f r V * , t e e e g p c r m o

the object's brightness fundtion -- the square root of which is an
estimate of the Fourier modulus of the object's brightness function.
This square root is used in the iterative transform algorithm to
retrieve the associated Fourier phase data and thereby reconstruct an
image.
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We see from Eq. (3-10) that the estimated autocovarlance of the
observed speckle pattern provides a weighted, or filtered, estimate of
the object's energy spectrum. This weighting is completely determined
by the spatial arrangement of the detectors making up the collecting
aperture. Because this weighting function OTF(Au) is equal to the
autocorrelation of the measurement pupil, we refer to O0F(Au) as the
optical transfer function (OTF) for the imaging correlography system --

with obvious analogy to the OTF arising in the analysis of incoherent
imaging systems. The modulation transfer function (MTF), is Just the
modulus of the OTF; and since the OTF is nonnegative, MTF(Au) -

OTF(Au). The fact that this OTF is in the form of an autocorrelation
allows us to consider the use of sparse arrays of intensity detectors
in imaging correlography.

The fact that the OTF for imaging correlography is given by the
autocorrelation of the pupil function H(u) suggests a procedure with
which to remove sidelobe artifacts introduced by a multiple-aperture
(sparse array) measurement scheme. If the detector elements are
positioned so that the autocorrelation of the detector array does not
drop to zero within the bandpass of the OTF, the object energy spectrum
estimated by the imaging correlography process contains essentially the
same spatial frequencies as a filled aperture having the same diameter
as the sparse array. And, provided that the noise in the estimated
autocovariance is not too great, the energy spectrum estimate can be
boosted to match the OTF of a completely filled aperture; an image with
nearly the resolution of the full aperture is then, in theory,
synthesized.

In practical applications of imaging correlography, noise in the
Fourier modulus estimate will arise from many sources including
detector noise, background flux noise, photon shot noise, and noise
that is introduced when a finite number of speckle measurements is used
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to estimate the speckle autocovariance. Where all the noise sources
additivA and uncorrelated with the signal 'component, one would
logically implement the MTF boosting procedure by applying a Wiener-
Helstrom filter [3.14] to the Fourier modulus estimate so that the
mean-square error between the estimated image and the true (full-
resolution) image is minimized. Even if the signal and nolsesources
do not exactly 'satisfy these conditions, a Wiener-Helstrom, filter is
still veryadvantageous to use t3.143.

For conventional incoherent imaging systems the Wiener-Helstrom
filter is of the form

2(ow) OTFNAU) Ir(Au)1 2

u IOTF(Au) Ir(Au) 12 + En(hu)

'2where Ir(Au)2 is the energy spectrum of the object's brightness
function, equal to Es(Au) used in Eq. (3-6), OTF(Au) is the OTF of. the
collecting aperture,, and En(Au) is the energy spectrum of the image.
domain noise. This filter is based on a model of the imaging process
which is given in the Fourier domain as OTF(Au) r(Au) + ý,,ise.
However, a better model for imaging correlography is

A 2
CI(Au; N) - OTF(Au) Ir(Au)I + Nc(Au) , (3-12)

where N,(Au) is additive noise, for which the appropriate filtering
operation to estimate the object's energy spectrum is

IN(u)12 - Wc(AU) C (Au; N) (3-13)
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where the filter is given by

Wc(AU) . OTF(Au) Ir(Ag)[4 (3-14)
Wcu IOTF(&u)I2 ir(Au)I4 + EC(Au)

where Ec(Au) is the variance of Nc(Au).

Whether taking the square root of the speckle autocovartance then
filtering with Eq. (3-11) or filtering the speckle autocovariance with
Eq. (3-14), then taking the square root, in either case the MTF is
boosted where the signal-to-noise ratio is high and it is depressed
where the signal-to-noise ratio is low, thereby resulting in a better
Fourier modulus estimate. Indeed, results of the computer simulations
presented in the next section demonstrate that such filtering
techniques improve the overall quality of imagery recovered in imaging
correlography.

We conducted a series of computer experiments to demonstrate that
phase retrieval can be used to recover imagery from far-field speckle
intensity data collected over a sparse array. The procedure followed
here is essentially the same as that reported in Section 3.1, with the
exception that here the speckle realizations used to compute an
estimate of the incoherent object's energy spectrum are masked with a
pupil function H(u) emulating a sparse collecting array.

The original object data for these experiments was the same as
described in Section 3.1. For these sparse aperture simulations, we
used a Golay-type array [3.15] comprising six subapertures. Figure 3-6
shows the Golay aperture configurations used for this study together
with the corresponding OTF's and point-spread functions. The narrower-
and wider-segment Golay arrays were both configured to have a 16 pixel
separation between adjacent suoapertures; the diameters of the
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FIGURE 3-6. GOLAY CONFIGURATIONS CONTAINING SIX SUBAPERTURES. Upper
left: Aperture functions H(u) for the Golay-6. Right: OTF's
corresponding to the Golay-6 aperture functions shown in the upper
left. Lower left: Point-spread function associated with the wider-
segment Golay-6 aperture.
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individual subapertures in the narrower- and wider-segment arrays were
11 and 13 pixels, respectively. In both the cases the OTF, which Is

the autocorrelation of the pupil function, consists of a large central
peak surrounded by 30 satellite peaks. Although the widths of the

subapertures for both cases were chosen to be large enough that the OTF
does not drop to zero within the bandpass, the narrower-segment array

OTF does drop to low values in the regions between the satellite OTF
peaks. In the presence of noise, these dips in the OTF could result in
information loss at these spatial frequencies. For the wider-segment
case, the OTF stays above half of the value of the satellite peaks in
the areas between the satellite peaks, as can be seen in Figure 3-7.
FOr this reason the wider-segment Golay array was chosen for the
simulation. To perform the filtering operation on the complex object
data, the sampled Golay arrays wire embedded in a 128 x 128 array.
Multiple realizations of the coherent object data are then obtained by
using different random number seeds in the computation of the complex
Gaussian random variables.

An estimate of the object energy spectrum was formed by processing
multiple arrays of pupil-plane speckle intensity data computed from
realizations of the filtered coherent object. Several different
estimators of the object energy spectrum can be used, such as the one
given by Eq. (3-7). Figure 3-8 shows an example of the data that was
computed for these experiments, first the average energy spectrum of
the speckle intensity was computed by inverse Fourier transforming the

square modulus (i.e., the speckle intensity) of the Golay-apertured
Fourier transform for each simulated coherent image, and then these
speckled energy spectra were averaged together as shown in Figure
3-8(A). After a large number N of independent coherent speckle data
sets were processed in this fashion, a DC term (in fact a function,
corresponding to a scaled version of the squared modulus of an average
of the Fourier transforms of the windowed, speckle intensity arrays
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FIGURE 3-8. ESTIMATING THE ENERGY SPECTRUM OF SPECKLE INTENSITY FOR
THE GOLAY-6 APERTURE. (A) Noncoherent average of 1024 autocorrela-
tions; (B) an estimate of the dc-term; (C) (A) minus (B); (D) the
corresponding estimate of the Fourier modulus (the square root of the
estimated autocovariance).
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observed over the measurement aperture) was computed, as shown in
Figure 3-8(B). This DC term was subtracted,, with the result. shown in
Figure 3-8(C). This result was Fourier transformed, providing an
estimate of the autocovariance of the observed speckle pattern, which
by Eq. (3-10), is an OTF-weighted estimate of the incoherent object's
energy spectrum. This is shown in Figure 3.8(D).

Results of image reconstruction experiments applying phase
retrieval to the estimate of the object's energy spectrum are shown in
Figure 3-9. Figure 3-9(A) shows the averaged energy spectrum (with the
DC term removed) of the pupil-plane speckle intensity for the wider-
segment Golay-6 array shown in Figure 3-6, for which N - 101240
independent realizations of speckle intensity were averaged. Figure
3-9(B) is an estimate of the Fourier modulus of the object's brightness
distribution computed by taking the square root, of the Fourier
transform of Figure 3-9(A). Negative numbers, resulting from noise
associated with the finite-average approximation to an. ensemble
average, were set to zero prior to taking the square root. Figure
3-9(C) is the image produced by applying the iterative transform phase-
retrieval algorithm [3.6-3.6] to the Fourier modulus data contained in
Figure 3-4(B). The procedure for accomplishing phase retrieval
involved applying several cycles of the hybrid Input-output algorithm
(using beta - 0.7) and the error reduction algorithm until the
algorithm appeared to stagnate. The object-domain constraints used
were non-negativity (since an unspeckled, or incoherent, image is being
reconstructed) and a loose support constraint, a rectangle half the
size of the smallest rectangle enclosing the average energy spectrum of
the observed speckle pattern. The object is guaranteed to fit within
this support constraint [3.16].
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FIGURE 3-9. IMAGE RECOVERY USING THE GOLAY-6 APERTURE, N 1 !0,240.(A) Average energy spectrum of the measured speckle patterns (with dc-
term removed); (B) estimate of the Fourier modul us of the object
brightness distribution; (C) image reconstructed from (B) using theiterative transform (phase retrieval) algorithm; (D) Wiener-like filter
for the Golay-6 aperture; (E) filtered Fourier modulus estimate;(F
image reconstructed from (E); (G) original incoherent object; (H)
filtered, incoherent object; (I) results of filtering (C).
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Note that the recovered imaga shown in Fig. 3-9(C) is very noisy
compared with the original incoherent object, shown in Fig. 3-9(G),
although a general resemblance of Ahe object has been recovered. Noise
in this reconstructed image is due to the fact that a finite (albeit
large) number of speckle realizations were used toestimate the Fourier
modulus. To reduce these noise effects, we multitlied theFoumer
modulus estimate shown inFIg. 3-9() by the Witener-like filter of'Eq.
(3-11). For these simulations, the energy spectrum of the object was
taken to be an angular (spin) average over the squared Fourier modulus
of the true object. The noise spectrum was approximated by a constant,
whose value was obtained by averaging the squared-Fourier modulus
estimate over those higher spatial frequencies where the signal-to-
noise ratio was less than one. Figure 3-9(D) shows the resulting
Wiener filter used for this example. Figure 3-9(E) shows the product
of the filter 3-4(D) with the original Fourier modulus estimate 3-9(B).

Figure 3-9(F) shows the image reconstructed from the filtered
Fourier modulus estimite 3-9(E) using the phase retrieval algorithm.
Note that the filter has significantly improved the quality of the
reconstructed image 3-9(F) over that In 3-9(C) reconstructed without
filtering. For the purposes of comparison, the original object 3-9(0)
was passed through the filter 3-9(D), with the result shown in 3-9(H).
The image reconstructed from speckle correlation measurements, shown in
Fig. 3-9(F), compares favorably with the filtered object 3-9(H),
indicating good performance on the part of the iterative transform
algorithm. Figure 3-9(1) shows the result of applying the Wiener
filter to the reconstructed image shown in Fig. 3-9(C). It appears, at
least for this example, that filtering followed by Image reconstruction
is somewhat superior to image reconstruction followed by filtering. We
might expect to get even better results by using an improved Wiener
filter, for example, by using a better estimate of the object power
spectrum or by using Eqs. (3-13) and (3-14).
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One way to evaluate the MTF-boostlng properties of the filter of
Eq. (3-11) is by inspection of the filter, which is shown in Figure
3-9(0). Notice that It has a local minimum in, the center (at zero
spatial frequency) and a ring of local maxima at a higher spatial
frequency. This compensates, in part, for the rapid drop-off of the
OTF that can be seen in Figure 3-7. The ratio of the peak value of the
filter to the zero-frequency value is 3.38, a sizable boosting of the
OTF at that spatial frequency. This falls short of a complete
compensation due to the noise energy spectrum term in Eq, (3-11). For
the same reason, the filter drops off for the highest spatial
frequencies, where the noise dominates the signal.

Another way to evaluate the MTF-boosting properties of the filter
of Eq. (3-11) is to compare the imaging results shown in Figure 3-9
with those obtained with a filled collecting aperture. Figure132 in
Section 3.1 shows the results of Image recovery from simulations of
imaging correlography obtained with a full aperture, where the
simulated speckle intensity data were filtered by a square aperture
comprising 64 x 64 "detector" pixels fully encompassing the sparse
Golay aperture used above. (The width of the Golay array is only 55
pixels.) Except for the form of filtering used to mask the speckle
measurement data, the digital, processing steps used to produce each
frame of Figure 3-2 is identical to that of the corresponding frame of
Figure 3-9. The top row of frames of Figure 3-2 correspond to image
retrieval with a full aperture, but without Wiener filtering. Note
that the resulting image 3-2(C) is noisy, but is significantly better
than its sparse array counterpart 3-9(C). The filter shown in 3.2(D)
is that prescribed by Eq. (3-11) with the OTF given by the auto-
correlation of the filled, square aperture. Figure 3-2(F) shows the
image recovered from the Wiener-filtered Fourier modulus 3-2(E) for the
filled aperture. Comparing Figures 3.2(F). and 3-9(F) indicates that
most of the key features of the object recovered in the filled-aperture
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case were also recovered with the sparse, Golay-6 aperture case.
However, some of the finer details of the object recovered in the full
aperture case were smoothed over in the Golay aperture reconstruction.
This loss of resolution for the sparse-aperture case is the result of a
smaller OTF(Au) value (i.e., a lower redundancy), and hence a lower
signal-to-noise ratio, for larger spatial frequencies.

The results of this section demonstrate the possibility of
recovering images from nonimaged (far-field) laser speckle patterns
observed with sparse arrays of intensity detectors. The images
obtained using a combination of a Wiener-filtered speckle
autocovariance together with the iterative transform phase retrieval
algorithm show marked improvement over those obtained without
filtering. The fact that the image in Fig. 3-9(F), constructed with

.sparse arrays of detectors, approaches the quality of the ful'laperture
image shown in Figure 3-2(F) suggests that the MTF boosting filtering

,is successful in removing image artifacts due to the sparse collecting
aperture.

Figure 3-10 shows similar results for the sparse aperture, but with
only N - 1024 realizations averaged. As in the filled-aperture case,
the loss-in resolution due to a lower signal-to-noise ratio is evident.

3.3 SIGNAL-TO-NOISE RATIO AND RESOLUTION

Up to this point, we have alluded to the fact that the signal-to-
noise ratio and the quality of 'the reconstructed images in imaging

correlography increases with the number N of independently observed
speckle patterns. More to the point, the error in the speckle
autocovariance, and so tne Fourier modulus estimate, will improve as
the number of speckle measurements increasek, whether these speckle
measurements arise from -additional speckle' pattern realizations
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FIGURE 3-10. IMAGE RECOVERY USING GOLAY-6 APERTURE, N - 1024. (A)
Average energy spectrum of the measured speckle patterns (with dc term
removed); (6) estimate of the Fourier modulus of the object brightness
distribution; (C) Wiener-like filter for the Golay-6 aperture; (D)
filtered Fourier modulus estimate' (E) image reconstructed from (D);
(F) original incoherent object; (GS filtered, incoherent object.
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(snapshots) or from an increased redundancy in the OTF of the

collecting aperture. This flexibility, in choosing between number of

snapshots N and collecting array redundancy, can be better appreciated

by considering the signal-to-noise ratio (SNR) of the autocovariance
estimate achieved in imaging correlography.. Assuming that time-

sequential measurements of the speckle patterns are statistically

independent, we can show that the SNR of the estimate of the object's

energy spectrum at spatial frequency Au provided by the estimator of

Eq. (3-7) is given by [3.17, 3.18]

SNRC(Au; N) (N L)1/2  IM(Au)0

[3 + 141i(Au) 2 + 31 #(Au)14]j/2 (3-15)

where N is the number of independent speckle patterns (snapshots)

observed, p(Au) - r(Au)/r(o) is the complex coherence factor for the
measured speckle field, and

L a L(Au) a Ns OTF(Au) (3-16)

is the number of redundant pairs of speckle intensity in the collecting

aperture measured at pixel separation Au. In the above, Ns is the

number of independent samples of intensity (or number of speckles)

contained in the measurement aperture H(u). For the case that the

noise in the Fourier modulus estimate is dominated by statistical

fluctuations in the autocovariance estimate itself (not by photon shot

noise, etc.), Eq. (3-15) specifies the trade-off between array

redundancy L and number of speckle snapshots N needed to keep the SNR

of the estimate at an acceptably high level. Keeping the SNR of the

speckle autocovariance, and so the SNR of the estimate of the object's

Fourier modulus, at a high level will preserve an acceptable quality in

the image recovered using the iterative transform phase-retrieval

algorithm.
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Notice from Eq. (3-15) that the SNR increases with

(1) Increasing aperture size [for a fi1led aperture SNR a (L) 1/2 a

(Ns)1/2 a (aperture area)1/2 1

(2) Increasing object diameter [SNR a (Ns) 1 / 2 a (object area)1 /2J

and

(3) increasing number of snapshots CSNR a (N)1 /2 ].

For high spatial frequencies, 1j(hu)1 2 << 1 and

SNR,(Au; N) t TF(uT 10(u)012/mT' . (3-17)

These higher spatial frequencies are of interest in obtaining

resolvable detail in the reconstructed image.

In order to test the accuracy of these SNR expressions, we

computer-simulated speckle frames, performed the correlography

averaging, and determined the error in the estimate of pi12 . Taking
the Fourier transform of the data averaged according to Eq. (3-3)

yields an OTF-weighted estimate of the power spectrum of the incoherent

object, as given by Eq. (3-10). Normalizing that to unity at zero
spatial frequency yields an estimate of OTF(Au) Ip(Au)l 2 . The variance

the estimate of I#12, from Eq. (3-15), is

A 2 2 4
Var{lA(Au) 1} C3 + 141#(Au)I + 31#(Au)I ]/[NN, OTF(Au)J . (3-18)

Therefore the variance of the estimate of OTF(Au) Ip(Au)1 2 is

Var{OrF(Au) Ip(Au)1 2 } • OTF(Au) [3 + 141#(Au)1 2 + 31#(Au.)I 4 ]/(NNs)

(3-19)
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In order to compare theory with simulation results, It is necessary.

to compute the statistics of the simulated data 'over large areas in the

frequency domain. However, the yariability of OTP(Au) over such an

area would confuse the results. Hence we also looked at an estimate of

IOTF(Au) I#12, which has a variance

Var{fJT!(' Ip(Au), 2 1 a OTF(Au) Varjl#(Au)l2

m [3 + 141j(hu)12 + 31#(Au)1 4]/(NNs) (3-20)

which is independent of OTF(Au). Thus we considered the two absolute

errors

ew(Au) • OTF(Au) I(Au02 .OTF(Au) p(Au)l2 (,3:(3,6,1)

with the natural OTF weighting, with variance given by Eq. (3-19)land

eu(Au) m JWTF(AT 1^(Au)I2 I.'IFlT IW(Au)I2. (3-22)

with 97r weighting, with variance given by Eq. (3-20), which is not

weighted by the OTF. This .r-weighted data was obtained by dividing

the naturally-OTF-weighted data by TGTPTXT [the result was set to

zero where OTF(Au)-O].

Figure 3-11 shows these two absolute errors, for the filled-
aperture case described in Section 3.1. The middle-grey.areas have

zero error, the lighter areas have positive error, and the darker areas

have negative error. Figures 3-12 and 3-13 show the same thing for the

Golay aperture c~se described in Secti6n 3.2. Note that for the OTF-

weighted case, the error is maximuwi near Au-O (at the center) and falls

to zero at the edges where OTF(Au) : 0. as predicted by Eq. (3-19).

42



FIGURE 3-11. FOURIER INTENSITY ERROR FOR FILLED APERTURE.
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FIGURE 3-12. SQUARED FOURIER MODULUS ERROR FOR GOLAY-6 APERTURE
(N - 128).
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FIGURE 3-13. SQUARED FOURIER MODULUS ERROR FOR GOLAY-6 APERTURE

(N 1024, 10,240).
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For the MTr'-weighted ("unweighted") case the errors are more
uniformly distributed across the frequency plane, as predicted by Eq.
(3-20). Because we normalize the estimated data to unity at Au-O, by
definition we made the absolute error equal to zero at Au-O. It is
Interesting to note that the correlation distance of the absolute error
appears to decrease as the number, N (K in the figures),: offrames
averaged, increases. This effect is presently not understood.

The averaging to compute the statistics of the error was done over
a 32 x 32-pixels square area shown in Figure 3-13(A) for the Golay-
aperture case and in the same-sized square in the corner of the square
filled-aperture case. In these areas JIOTFAu 0.20 for. the ftilled
aperture and = 0.10 for the Golay aperture. In both cases, since the
object fits-within a rectangle of size 40 x,60 pixels embedded in .a 128
x 128 array, the number of samples per speckle in the aperture plane is
(128 x 128)/(40 x 60) - 6.83.. The areas of the filled and Golay
apertures were measured to be 64 x 64 - 4096 and 822 pixels,
respectively. Consequently, the value of N., the number of speckles in
the aperture is 4096/6.83 - 600 for the filled aperture and 822/6.83
120 for the Golay aperture. These ereas of integration were chosen to
be at large IAul for which I#(Au)I << 1, so that the theoretical
variance expressions simplify to

Var[OTF(Au) IA(Au)1 2] 3 OTF(Au)/(NNs) (3-23)

and
A

Var[[JOTF(Ru I#(Au)1 2] t 3/(NNs) . (3-24)

In addition, for the I " 1#12 case, averages of the statistics
were taken over the entire array in order to obtain better statistics.
In this case it was also assumed that I#1 << 1 enabling us to use Eqs.
(3-23) and (3-24). Although it is not true for small values of IAul,

46



these areas are relatively small compared with the total array size;'
consequently, when averaging over the entire array the assumption that

12 < 1 is reasonable.

Table 3-1 compares the theoretical expressions for the noise
variance given by Eqs, (3-23), and (3-24) with the measured variance of
the simulated data. Individual values 'donot agree very well because
it was not possible tn integrate over large enough areas to get good
statistics. The last column, the ratio of the measured variance.to the
theoretical variance, shows that for roughly half the cases the
measured variance exceeded the theoretical variance, and for the other
half it was less. Thus on average the measured ,noise variance roughly
agrees with the theoretical expression, giving confirmation of the
theory.

Next we compute the number of frames required to achieve a gi'ven
resolution for a particular imaging scenario. Figure 3-14 [3.19] shows

the spin (angularly) averaged I#(Au)I2 for the satellite object at a
finer resolution than for the version of the image shown earlier in
this Section. For this version the object fit within a 128 x 128 array
embedded in a 256 x 256 array, and its Fourier transform was not
weighted by an OTF function. Hence its resolution was about 4 times
better 'In each dimension than the image shown in Figure 3-2(G). The
value of IAul at the highest spatial frequency shown in Figure 3-14 is

therefore equivalont to collecting an array of about 128 x 128
speckles. Thus an tiperture of size 32 x 32 speckles would achieve a
resolution equivalent to Au - 0.25 on this chart, at which 1#12s

0.012. At half this spatial frequency (i.e., Au - 0.125 on this plot).
one would have I#12_ 0.02. Achieving resolution at one-half the
highest spatial frequency passed by the aperture Is a reasonable goal,
since for that spatial frequency OTF(Au) : 0.5, whereas for higher
spatial frequencies the SNR given by Eq. (3-17) drops off rapidly
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Tabl~e 3-1

Comparison of Noise Variance Theory
with Simulations

For OTF(Au) Ija(Au).12  32 X132 reg ion s where' 1#1 11:

Aperture-,N .2 Theoy ________

FileI d. .1102.4 .10 E-6 .40 E-6, -.0.4.
Filled 1,024 .01065 .2E-6 0.6.
F i lled 10,000 .10 E-6 .19 E-6 1.9
Filled 10,000 .10 .E-6 .25 E..6 2.5

Golay 128 .20 E-4 .37 E-41.
Gol ay 1,024 .25 i-5, .13 E-5 0.5.
GoAY 10,240 .25 E-6 .12 E-0 0.5

For ADW(I(AT) 1-a(Au)I21 .Sitir. array, assume tp2~ It

Apertur'e. N IV2 Theory' !2''Masured . tijo

FilIl]d ,1,024 .3 E-5 4.6 E-5 .0.9
Filled 10,000 J.3. E-6 .76 E-6. .235

Gol'ay 128 .20 E-3 .26'E-3 .
Golay 1,024 .24 E-4 .15 E-4 0.6
Gay1024 .24 E-5 13- 1E4 0.5
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because both OTF(Au) and IM(Au)I2 are decreasing rapidly. Plugging
these numbers (Ns a 32 x 32, OTF 0.5, I12 - 0.02) into Eq. (3-17)
yields SNRc 0.26N Therefore in order to achieve a given SNRC for
this example, the required number of Independent frames is N • 15 SNR2.
If, for example, a faithful image requires SNRc - 10, then 1,100 frames
would be required to achieve a faithful image. Recall that, for this
example, since 32 x 32 speckles were assumed to be in the filled
aperture, and 1/2 the maximum spatial frequency was reconstructed, then
this image would have a space-bandwidth product of 16 x 16 resolution
elements (e.g.: 20 cm resolution for an object of width 3.2m in
diameter).

If the array size were doubled in each dimension in order to
achieve 10 cm resolution, then N. - 64 x 64, keepOTF(Au) - 0.5, from
Figure 3-14 #12 : 0.012, and SNRC t 0.31 N1/ 2 ; and one needs N ' 10
SNRcO For SNRC - 10, this requires N -1,000 frames. Thus from this
example, we see that as the array size and resolution increase, the

number of frames can decrease. However, this is not always the case:
it depends upon whether the product of the aperture length with
IM(Au)1 2 increases or decreases as the aperture length and Au increase
together; thlsdepends upon the characteristics of the target. An
object consisting of a small collection of point-like scatterers or
dominated by glints will have a I#(Au)t that falls off much more
slowly than for a uniform, very extended object. Consequently the
point-like objects require far fewer frames to achieve a given
resolution. Note also that for the example of the larger aperture, in
order to Iet the 20 cm resolution one could be required to gather only
N - 4 SNRc, or 400 frames for SNRc a 10, versus 1,500 frames required
for the smaller aperture. Thus, we see the trade-off between the array
area (in particular its redundancy) and the number of frames in order
to achieve a given SNRC at a given spatial frequency: it is the
product NNs OTF(Au) that matters.
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The above noise analysis included only the effects of approximating
the ensemble average by averaging over a finite number of realizations.
The variance of the noise that includes both finite averaging noise and
photon noise is given by [NN, OTF(Au)]" 1 times [3.18J

(3 + 14 11&,2+3• 1#14+ [(,lnli +H la21<>J

where the first set of terms is due to finite averaging and the second
is due to photon noise, M is the number of detectors (pixels) per
speckle, and <n> is the mean number of photons per detector. Thus for
1#12 << 1, the finite averaging noise variance is proportional to 3,
while the photon noise variance is proportional to 4/(M <n>) + 1/(M
<n> 2). For M a 4,, the two noise variances are equal for <n> u 112
photon per detector or M <n> w 2 photons per speckle. ConseqUently,
independent of the array redundancy and the number of realizations,
photon noise will be negligible as long as the number M n>ý'of photdns
per speckle is much greater than two.

In summary, we have demonstrated via computer simulations that it
is possible in principle to recover an incoherent image of a lasefr-
illuminated object from multiple realizations of detected speckle
intensities collected over sparse arrays. This would permit the
reconstruction of fine-resolution images despite phase errors due to
atmospheric turbulence. The expressions for signal-to-noise ratio as a
function of spatial frequency, array redundancy, and number of speckle
realizations shows that large amounts of array redundancy and/or large
numbers of speckle realizations are required to reconstruct an image of
large space-bandwidth product.

Sections 3.2 ond 3.3 are an expansion of References 3.20 to 3.22.
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3.4 WIENER FILTERING

The Wiener-Helstrom filters given by Eqs. (3711) and (3-14) Were
shown to improve image quality; however, they are probably not the
optimum linear filters. In this section,. we describe two different
filters that could yield better, results-and adifferent.formulation of
the problem that would lead to a different filter. Since none of these
were implemented and proven, they should be considered speculative at
this point.

3.4.1 Recursive Wiener Filter

In the Wiener-Helstrom filters given by Eqs. (3-11) and (3-14), we
must know both an average power spectrum of the signal (estimated by
In2 and in 4 , respectively) and the power spectrum of the noise,
En(AU). The noise can often be determined by measuring the signal plus
noise in a region of spatial-frequency space where the signal Is smell.
In practice, estimation of the power spectrum of the object is a bigger
problem. Use of spin-averages of an ensemble of images from the class
of objects of interest is one approach. Another approach is to use the
realization of the given data. This can be done by the method that
follows.

For simplicity, first consider the conventional imaging model:

g s * g +n (3-25)

where go a the ideal image

s a the psf
n - noise
g - the measured image
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which, in the Fourier domain is

G - SGo + N (3-26)

Assuming go and n are independent stochastic processes, both zero-mean
Gaussians, then the least mean-squared error linear estimator for go- is

go [] where [3.14]

G WG (3.27)0and

iSlZ IG 12.0 + INIz ISIZ + /16! (3-28)
a 0

where INI2 and IGo12 are the power spectral dens'ities of the object and
the noise, respectively. Hel~trom notes that although the images
generally will not satisfy the statistical assumption stated above,
"Nevertheless... it can be expected to be effective when applied to
these images as well." So the Wiener-Helstrom filter is not optimum,
but it should be effective and it is very simple to use.

A big problem with the Wiener-Helstrom filter is that, although S
is often known very well from the system parameters and the expected
INI2 can be analyzed ahead of time, the object power spectrum, IG012 is
usually unknown. Helstrom suggested using a constant for IGol 2.
However, this is a very bad assumption since it is well known that the
power spectra of real, nonnegative objects has a large peak at low
spatial frequencies and then drops off at higher frequencies, typically
at a rate proportional to (spatial frequency) 1 .-
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A new meth 'od is to use the data itself as'the estimate 'Of Lb.
object power spectrum. Namely, use

IGO 2 *162 (.3-29)

However, as seen'from Eq. (3-26), this-may be a poot estimate.. Usi~ng
this estimate in Eqs. (3.27) and '(3-28) yieilds 'the Wiener..filtered
Fourier transform

G1 *W (3430)

where

H a 2rS (3-31)
0 I + INI /1G61

Now 16112 is a better estimate of IG 1,2 than 1G12 is. Therefore it
makes sense to form a new Wiener filter

WI 2' . * 2 (3-32)
ISA + INI /1611

and apply this to the data. This supposedly will yield a better
estimate still. Thus we can get successively better approximations of
the Wiener filter, Wne and of the object's power spectrum, IGnl+112

IWnGI2 via

The recursive estimation. of the- object's power, spectrum will
converge to a stable solution when
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2 ~2 2

IG,12  IGn+1 - IGnI1

I1SI2 + INI2/IGnl2 I33

Solving for 16.12:

IGO12 ,,o

or

* .G,,I ISI4C+ IGO2 ISl2 (21N12 + IGI2) + IN14 •0 (3-35)r

which simplifies to

!6. 12 w (21512)-i (1G12 -2N 2  4 01' 4 1N127  (-6

Note that for IG12 >> IN12, 1•1 2  approaches 1G12/1S1 2  far the
positive-square-root solution, the expecte@ result. In this same
limit, the negative square root yields zer4, dnd so only the positive
square root should be used in Eq. (3-36). Plugging this into Eq.
(3-33) yields

S* IG2 .21N2 + IGI4

4w11* s(IG12 -2N1 + !G 4 - 41 N12"" 1G 12  (3-37a)
IS12 (1612 + .GO 41N02  IGI2)

I + T - 41N12/1G1) (3-37b)

21S 2  •
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2S* INI2/IGI2  (3-37c)

IS1 2 (1 - 1- 41NI 2 /IGI 2 )

Note that for I<<1 , It1,,'• 0

We IS 1-(338)

and as lNI2/1GI2 * (1/4)1,

w 71 . ,(3.39)
Is'

For INI2/IGI2 > 1/4, Eq. (3-37) is invalid. By performing the recursive
calculation of Eq. (3-33) for this situation, it was found that IGn1 2

bec~ame progressively smaller, so that for INI2/IGI2 > 1/4,

IGa1 2 + 0 and W 0 . (3-40)n

It has not yet been assessed which of the Wiener filters discussed
above Is best.

Conversion of these results to the case of ImaginR correlography is
accomplished by replacing G In the equations above by C1 (Au;N).
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3.4.2 Iterative Nonlinear Filter

A completely different approach to filtering is as follows. Suppose
that go(x) and g(x) of Eq. (3-25) are spatially limited to some support
defined by

s(X) I Xg(X) > 0 (3-41)
, x:go (x) 0 0

for a nonnegative go(x) and g(x). Further it is assumed that the
support, Ss(U), of S(u):

f 1u) { ,'u:S(u)>O

S(u) I, u:S(u) > 0 (3-42)

is known. Then we can use the iterative transform algorithm to better
estimate go(x)*s(x) and Go(u) S(u) by iteratively setting successive
estimates of Go(u) S(u) to zero wherever Ss(u) - 0 and setting
successive estimates of go(x)*s(x) to zero whenever it is negative or
where gs(x) is zero. Since functions satisfying these conditions in
both domains form convex sets, this error-reduction algorithm is a
projections-onto-convex-sets (POCS) algorithm which, by Youla's analysis
[3.23J, has strong convergence properties (it may not be unique,

though). This iterative would reduce the noise and is an alternative to
Wiener filtering.

3.4.3 Improved Noise Model

The new methods for filtering described above attempt to makeup for
the lack of knowledge of the power spectrum of the signal. In this
section we point out that additional analysis needs to be performed in
order to properly model the noise.
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The two signal-plus-noise models assumed for the filtering actually

performed were [see Eq. (3-12)] OTF(Au) r(Au) + N and OTF(&u) Ir(&u)g2 +

Nc. After the image reconstruction experiments were oerformed, the

signal-to-noise ratio, proportional to MMTi, given by Eqs.
(3-15)-(3-17), was analyzed. Since the signal is proportional to OTF,

this implies that the noise is also proportional to M. This fact

was verified by the analysis and digital experimental described In

Section 3.3. Thus in order to derive an optimum linear filter for

imaging correlography it will be necessary, in future research, to

derive a new Wiener-type filter based on a model in which the additive

noise is weighted by M ,
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4.0 IMAGING AND CORRELOGRAPHY WITH A MIXED OBJECT

4.1 INTRODUCTION
ssection it. was assum eu

realizations employed in imaging correlography,"thatthe 6 p.al f elds

... 1 ',.-, c::' .i. ', I .. ..

' reflected by the object are diffuse,- zero e..an., and uncorrelated..

However this will not be true when the Object has one or moreglint
components. In this section we analyze the case in which the object's
reflectivity contains both a diffuse component and a glint, or
deterministic, component, Here we consider not on~ly imaging

correlography,: but other imaging modalities as well.

In most instances we model the imaging process as either coherent
or incoherent. From a coherent 'system one can get an incoherent image
either by (1) noncoherently averaging the Intensities of many coherent
images or (2) by heterodyne interferometry with multiple realtzations

or (3) by imaging correlography, 'which involves first averaging the
autocorrelations of the intensities of the aperture-plane fields to
estimate the energy spectrum of. the Incoherent. object, then
reconstructing an image by phase retrieval. In the analysis of the
formation of an incoherent Image from multiple realizations of coherent
data, one usually assumes that the object is diffuse. In what follows
we analyze the case for a mixed object, i.e. one that contains both a
deterministic component and a diffuse, variable component. All three
modes of obtaining an incoherent Image from- coherent data of a mixed
object will be analy~ed.
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4.2 MIXED OBJECT MODEL

We assume that the object is coherently illuminated and that it•I

complex amplitude reflectivity consists of two components, a
deterministic component g(x) (where x is a '2-D spatial'or angular
coordinate) and a diffuse component, dn(x)":' ,

fn(X) g(x) + dn(x) , (4-A)

The subscript n Indicates the realization number, where dn(X) is

assumed to have different realizations of phase, due, to a., rough
surface-height distribution, as the look angle changes slightly. The
underlying incoherent object, A.e. the object intensity reflectivity
had it been illuminated by incoherent light, of the diffuse component
is given by

d1 (x) <Idn(X) )>n, (4-2)

where <*>n denotes an ensemble average. We assume that dn(X) is zero
mean and spatially uncorrelated:

<tdn(X)>n - 0 (4-3a)

and

<dn(X1) dn(x 2 )>n - d1 (x1) 6(xl - x2 ) . (4-3b)

In the aperture plane, in the far-field relative to the object, the
complex amplitude of the backscattered radiation is given by the

Fourier transform of the coherent object,

Fn(I) - G(u) + Dn(U) (4-4)
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where the functions represented by uppercase letters are the Fourier
transforms of the functions represented by the corresponding lowercase
letters, and u is a 2-D coordinate in the aperture plane. The
component G(u) is deterministic. The diffuse component has the
following properties:'

<Dn(u)>n 0 (4-5)

and

<Dn(u 1 ) Dn(u2)>n - r D(u1 - u2) rD(AU) (4-5)

where superscript * denotes complex conjugate, Au * ul - u2 , and, by
the van Cittert-Zernike theorem,

rD(AU) .ý *,dWx] .(4-7)

where 7 denotes Fourier transformation. IDN(U)2 would be a fully-
developed speckle pattern (with negative exponential point statistics)
and Dn(u) is circular-complex Gaussian (ccg) distributed.

An example of an object satisfying the assumptions above is one
with a rough component, dn(x), that rotates slightly to result in
different realizations, plus an unchanging component g(x). The
unchanging component could be a part that does not rotate or it could
be a single unresolved corner reflector or stable glint.

4.3 NONCOHERENT AVERAGING OF COHERENT IMAGES

A single realization of a coherent image of the object through an
aperture A(u), with coherent impulse response a(x) - r 1 [A(u)], is
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a(x) * fn(x) - a(x) * g(x) + a(x) * dn(x) (4-8)

whare * denotes convolution. The average image intensity is

<la(x) * fn•x)i 2>n * Ia(x) * g(x)l 2 + <la(x) * dn(x)12>n,

+ [.a(x) * g*(x)J ra(x) ,dn(x)>nJ + c'c (4-9)

where c.c. denotes complex conjugate. The second term Is

<laWx dn(X)l2>n'. <if a(x 1 ) dn(X - x1) dxll2>n

* 'Ja(x1) a*(x2) 'cdn(x I x1  d(x - x2)>mndxd 2

a f Ia(xQ) 2 dI(x. x,) dx1

- la(x)1 2 * d1 (x) - (4-10)

where use was made of Eq. (4-3b). Using this and Eq. (4-3a),, Eq. (4-9)
simplies to

<la(x) * fn(x)1 2>n _ la(x) * g(x)1 2 + Ia(x)12 * d1 (x) (4-11)

'I

That is, in the noncoherently averaged intensity image of a mixed
object, the deterministic component images as in a coherent system
(i.e., convolution with the coherent impulse response, then modulus
squared) while the diffuse component images as in an incoherent systom
(i.e., incoherent object convolved with the incoherent impulse response
which is the squared modulus of the coherentimpulse response). This
result holds both for optical imaging systems and for microwave SAR.
More about this image will be said in the next section.
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4.4 HETERODYNE-INTERFEROMETRY AVERAGING

The second imaging mode is to measure complex fields, in'the
aperture plane using heterodyne detection, then calculate the average
coherence function for multiple ýealizations. 'This differs somewhat

from conventional amplitude interferometry,,.since,(ignoring aperture

effects for the moment) . , I-

rF(Ul,, u2) •<Fn(U1) Fn(U2)>n

"G(u 1 ) G*(u2) + <Dn(Ul) Dn(U 2)>n

+ G*(u 1) <Dn('U2)>n + C.i,

G(u1) G*(u 2 ) + rD(Ul . u2) -. (4,12)

is not stationary due to the presence of the deterministic term.
Direct image reconstruction from rF(ul, u2) is not possible because the
two terms on the right-hand side of Eq. (4-12) cannot be easily
separated out.

Consider the use of spatial integration or averaging. We denote

< >s a fa du, (4-13)

-We also write *<*>n>s as <O>ns* Including the aperture functions
explicitly in Eq. (4-12) ind spatially integrating the ensemble
average, for a given vilue'of Au - u1 - u2 (or'u 2 - u1 - Au), yields
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4A(u,) G(u,) A(u2) G (42)>s ~ )Au)D(ul - u2)N

I * (AQ6(AQ)(&u) + s(hu) r,0(Au) (-4

where (AG)O(AG)(Au) denotes the autocorrelation of A(u) 0(u).evaluated
at Au, and S(Au) is proportional to the optical transfer function due
to the aperture A(u):

S(Au) !'A$A(Au) * d(ul) A(u2)>,

*A0 OTF(4u) (.5

where OTF(&u) is thq optical transfer function for the-aperture A(u)

and

A0  f A2(u)'du .(-6

Inverse Fourier transforming Eq. (4.14) as a function of Au, one

gets t~he image .

Ia~) gx) 2 +Z4x)~ * d() a 'a(X) f n(X) 12mn (4-17)

which is identical' to the poncoherently. averaged intensity image in
Eq. (4-11). We refer to this image as the incoherent. image of-the
mixed object. It is not cleor whether thgre exists an incoherent
objOect that would give'rIse .to such an image, but for convenience we
define the incoherent mixed object# f1(x)# by
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Ia (x)12. fi) W <1a xW *fin(W)!2>n .(4-18)

The Fourier transform of the Incoherent 'image of the incoherent mixed

object is

S(Au) FI(Au) • (AG)I(AG)(Au) + S(Au) rD(Au) (4-19)

where Fi(Au) is the Fourier transform of the incoherent mixed object.

From Eqs. (4-1), (4-2), and (4-3a), the noncoherently averaged
object is

<fn( x)g2 >.+ <ldn(X)I'n

+ g*(x) <dn(x)>n + c.C.

Ig(x)1 2 +d1(X) (4-20)

An Incoherent image of the noncoherently averaged object would be

la(x)12 * <Ifn(x)12>n - Ia(x)1 2 * Ig(x)1 2 + la(x)1 2 * d,(x) . (4-21)

Note that this generally differs from the incoherent image of the mixed
object in Eqs. (4-11) and (4-17), except when g(x) is a single delta-
function, in which case they are the same, that is la(x)l 2 * Ig(x) 2 -
la(x) * g(x)1 2 . Consequently, the noncoherently averaged object is
generally different from the Incoherent mixed object. From Eq. (4-19),
the incoherent mixed object would be the inverse Fourier transform of
S'I(Au) [(AG)S(AG)(Au)] + rD(AU). However, it is not clear whether the
first term yields a reasonable "object" component in the general case.
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4.5 CORRELOGRAPHY/INTENSITY INTERFEROMETRY

In conventional correlography (diffusecomponent only), since Dn(u)
is ccg, the Gaussian moment theorem can be used to obtain (ignoring
aperture effects for the moment)

2 . 1 2 + 2 ( 4 -22)
IFD( -u 2 D (4-22)

where TD is the average intensity, so that the desired energy spectrum
of d,(x) can be obtained from the measured data:

I u- u2 <Dn(U1)12 IDn(u2)1 2>,,n y 2 (4-23)

Since all the terms in Eq. (4-23) are stationary, spatial averaging can
also-be included in Eq. (4-23) to yield the samo result.

For the mixed-object case, represented by Eqs. (4-1) and (4-4), the
expression analogous to Eq. (4-22) has sixteen terms:

<lFn(ui)1 2 IFn(U2)12> n

- .lG(ul)12  M Y'u2) + IGOI)I2 <lDn(U2)1> + IG" uN)12 <ln(Ui)12>n

+ IG(ul)I 2 [G*(u 2).e<Dn(u2)>n + c.c.] + IG(u2)12 [G*(ut) ;Dn(ul)>n + c.c.]

+ <lDn(u1 )12 IDn(u2)1 2>n

+ G*(u 2 ) <Dn(u2) IDn(ul)12>n + c.c.
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+ G*(u,) <ZDn(ui) IDn(u'2)I 2>n + Coco

+ G*(uj) G*(u2) <Dn(u1) Dn(u2)>n + Coco

+ G*(uj) G(u2) <D,(u1) Dn(u 2)>n + c.c. .(4-24)

Using <Dn(ul)>n g 0, Dn(u2) IDn(ul2I>n Ol0 and -CDn(u1  Dn(u2)>n ol0
this simplifies to

+ IG(ý1)I2 <I'Dn(u 2)I 2> n + IG(udl)2 <IDn(u)I 2>11

+ lF.D(ul - 2)1 + <IDn(U1)I2  ID(2)12

+ G*'(.u G(u2) rD(u1 .- u2) + Ccoc

<IFn(ui )12>, <IF,(u2)I2>, + iFDul *2 1

+ *(u) G(u2) rD(ul u2) + Ccoc (4-25)

where we have used, from Eq. (4-4),

<IFn(U)I 2> n <IG(u) + Dn(u)1 2>n

aIG(u)I2 + <IDn(u)I2 >n + cG*(u) Dn(u)>n + Ccc.

- IG(u)12 + <IDn(u)I2> n

IG(u)12 + rD(O) .(4-26)

Notice that Eq. (4-25) is not stationary.
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Now consider the spatial integration of Eq.. (4-25), in which we
include explicit aperture functions:

<A(u U1) (i 1  )I 2 A(u2 ) IF,,n(UPU2) >ns

-<A(ul) <IF n(Ul)1>n ANu) <lFn(U2)1ý>n > S

+ <A(u,) A(u2 ) ir(ul - i2>

+ <A(u 1 ) G*(ul) A(u2 ) G(u2) ro(u , )>+ c.c. (4-27)

*<(A <IF 12>l)$(A <IF-I') (Au) + S(Au) Irl(au)12 .

+ [(AG)s(AG)(Au)J* rD(Au) + c.c. (4-28)

where Au u1-u 2 . From Eq. (4-19) we have

S2 (Au) IFi(Au)l 2 * I(AG)G(AG)(Au)1 2 + S2 (Au) ir0 (Au)1 2

+ [(AG)I(AG)(Au)]* S(Au) rD(AU) + c.c, (4-29)

Inserting this into Eq. (4-28) yields

<A(u1) IFn(U,)12 A (u2) IFn (u2)12>,,

(A <IFni 2>n )@(A <IFnI 2>n)(Au)

+ S(Au) IFI(Au)1 2 - S'(Au) I(AG)O(AG)(Au)I 2  (4-30)
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where we define

S1I(Au) fl/S(Au) , S(Au) >0 (4-31)
SS(Ou)O -

As in conventional correlography, Eq. '(4-30) relates the ensembie
and spati.ally averaged aperture-plane intensities to the sum of an OTF-
weighted.power.spectrum of the incoherent (mixed) object and the square
of the average intensity (or more precisely, the autocorrelation of the
ensemble averaged intensity). However, the deterministic component
does not add to the bias in the same way as the diffuse component,
requiring the subtraction of the additional (the last) term in Eq.
(4-30).

IGn(u)I 2 can be determined as follows. For u2  u u1 , u (Au - 0),
Eq..(4-25) gives

<IFn(U)1 4>n (<IFn(U)I12>n) 2 + r2(O) + 21G(u)i 2 rD(O) (4-32)

where we have used the fact that rD(O) is real valued. Eqs. (4-26) and
(4-32) constitute a set of two simultaneous equations in two unknowns,
IG(u)I and rD(O). Their solution yields

IG(u)1 4 a 2(<IFn(U)1 2>n) 2 - <IFn(U)I 4 >n (4-33)

and

rD(O) - <IFnU >n IG(u)l2
n u 12>n .... .4....

<lFn(u)12>n -2(<IFn(U)I2>n)2 " <lFn(U)I >'n . (4-34)
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2
For a complete solution of IF1(bu)I from Eq. (4-36), one must

deteflne the last term in Eq. (4-30) from the data, a task yet to be

accomplished.

Note that for G(u) a 0 (i.e., no deterministic component), Eq.

(4-30) reduces to the conventional correlography result, and for Dn(u)

, 0 (i.e., only a deterministic component), the last two terms (the

interesting ones) in Eq. (4-30) cancel, leaving a useless equality.

Single-alint case.

Now consider the specific case for which, the detemtinistic
component of the object is a single delta function (a glint or corner
reflector):

g(x) - b (x - x0 ) . (4-35)

Then we have

G(u) • b exp(-12rux0 ) , (4-36)

<I~rnwx) '>n
f1(x) J . Ib12 6(x - x0) + dl(x) (4-37)

F,(Au) - Ibl 2 exp(-12r Au .*o) + r0 (Au) , (4-38)

IFI(AU)1 2 . Ib1 4 + irD(AU)l2

+ IbI2 exp(12r Au x0) r D(Au) + c.c. , (4-39)
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<lFn(U)1 2>n . ibl 2 + <D1 n(u)l2>n Ibl 2 + rD(O)

S<IFnn 12>n (4-40)

and

4 2<IFn(U)l 4>1 * Ibl4 + 41bh2 r2(o)+2r0(o)

<1 i4> (4-41)

the latter two equations being independent of u. For this object, Eq.

(4-30) becomes

<A(u,) IFn(uJ)l2 A(u4) IF n(U2).12>ns

-S(Au) [(<lFnI 2>n) 2 + IF,(Au)1 2 - Ibl 4]

- S(Au) [IF 1(Au)I 2 - (<lF.i n)2 + <IFn 4>,n] (4-42)

where we used, from Eq. (4-33),

Ibl 4 a IG(u)l 4 - 2(<lFnl2>n) 2 - <IFn14>n (4-43)

Therefore we can solve for IFY(AU)1 2 for this object in terms of

measurable quantities;

S(Au) 117(A0012- <4(u1) IFn(Ud' 2 A(u2) IFn(U2)12>s

+ S(Au) [(<IFnI2>n) 2 - <lFnI 4>n]

- <A(u 1 ) IFn(ul)1 2 A(u2 ) IFn(u 2 )12>ns - S(Au) Varn(IFnl 2 )

(4-44)
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where Varn(IFnl2) is the variance over the ensemble of intensity
realizations. The incoherent image of this type of mixed object can be
reconstructed from Eq. (4-44) via phase retrieval with the help of a
nonnegativity constraint.

Note that this differs from the usual 1112 - T2 averaging done for
the case of a diffuse object only. In that style of notation, Eq.
(4-44) is equivalent to

1F1(Au)I a <(1112 - I + Tý> . (4-45)

Since for a fully-developed speckle pattern

1.-2T2 (4-46)

this estimator is equivalent to

IF1 (AU)i 2  <<112 - 2T2 + T2>. <1112 - 72> (4-47)

for the case of G(u) - 0. That is, the estimator of Eqs. (4-44) and
(4-45) gives the correct result whether there I a single glint or no
glint, whereas the other estimators, such as 1112 "2 give the wrong
answer if there is a single deterministic glint. The presence of a
glint can be detected by computing Eq. (4-43).

Notice that ensemble averaging alone and ensemble averaging
followed by spatial averaging yields useful information. However, we
were unable to find useful information in spatial averaging alone for
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the case of a mixed object. (And spatial averaging followed by
ensemble averaging is equivalent to ensemble averaging followed by
spatial averaging: <<.>n>s M <<*>s>n for the quantities analyzed.)

This type of image formation would be unaffected by atmospheric
turbulence as long as nonisoplanatism and scintillation are not present
since only aperture-plane intensities are measured. However,
atmospheric turbulence would severely limit conventional coherent
imaging or heterodyne interferometry.

75



5.0 COHERENT IMAGE RECONSTRUCTION FOR OBJECTS HAVING GLINTS

5.1 INTRODUCTION

Ordinarily when we image a space object with a~large-aperture

earth-bound optical Imaging sensor, the resolutlQn iA verypoor owing

to phase aberrations caused by the, turbulent atmosphere.. An, approach

to circumvent this problem, initially studied over a decade ago,, is

laser correlography [5.1]. It involves the Illumination of the space

object by a coherent laser and the detection of the backscattered

intensity pattern in the aperture plane. This speckled intensity

pattern is the squared modulus of the Fourier transform of the complex-

valued object reflectivity. Ordinarily this allows only an

autocorrelation of the object, not an image of the object, to be

computed.

For certain favorable object geometries, such as objects having

separated parts, an iterative Fourier transform algorithm has been
developed that retrieves the phase of the Fourier transform of the
object and thereby permits a diffraction-limited complex-valued image
to be reconstructed [5.2]. Unfortunately the class of objects for
which this-approach currently works is too limited. An approach that
works for general objects is that of imaging correlography [5.3]
described in Section 3. By averaging over the autocorrelations of many

aperture-plane speckle Intensity patterns, one arrives at the modulus
of the Fourier transform of the incoherent object (the object had it
been illuminated by an incoherent source such as the sun). In thi;

case the ideal image is real-valued and nonnegative, and an image of a
general object can be reconstructed from the Fourier modulus data using
the iterative transform algorithm employing the powerful nonnegativity
constraint. This concept has recently been verified in laboratory
simulations [5.4]. Unfortunately in many circumstances it may be

impractical to collect a large enough number of snapshots of aperture-
plane speckle patterns to arrive at a good statistical estimate of the
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incoherent Fourier modulus. 'For this reason it is'of great interest to
be able to reconstruct a coherent image from a single snapshot of data,

despite the difficulty mentioned at the beginning of this paragraph.

It has been observed that satellites frequently have strong glint

returns (mirror-like reflections off 'solar 'panels, for example). It

has long been known that if there is a single glint sufficiently

separated from the test of the object, then by the holograohic method
[5.5] one can easily reconstruct a coherent image from a singl'e

snapshot of data. However, such ideal gl'ints would be relatively
-unconmmon. Glints centered' on the object 'or multiple glints would
prevent the use of the holographic approach."'

In this section we describe methods developed for reconstructingian

image having glints from a single' realization of the intensity of the

aperture-plane speckle pattern from a coherently illuminated object.

In'Section'5.2 the most successful 'method we developed isi escribed.

It consists of three successivel algorithms. In Section 5.2:1s shown

reconstructions using just the iterative transform 'algorithm.' 'A

:recursive reconstruction algorithm that gave limited success is

described in Section 5.3. In Section 5.4 the effect of a large glift

on the quantization error of the measured data is analyzed;.

5.2 THREE-ALGORITHM METHOD

In what follows, we describe an approach' that permits a high-
fidelity image to be reconstructed from a single snapshot of aperture-

plane intensity data for the case of nonholographiC multiple glints

located on the' 'object. The approach consists' of three algorithms

employed successively. The' first" algorithm reconstructs the glints

only, both their positions and their complex values. It involves the

triple intersection of translates of'the autocorrelatton function. The

second algorithm uses the vec6hstructid gtints'along with the aperture-

plane intensity data to arritve at a partially reconstructed cohec'ent
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image of the entire object. It is modification of the AF-synthesis
algorithm in x-ray crystallography. The third algorithm completes the
reconstruction of a high-fidelity image using information about the

support or size of the object. It is the same iterative Fourier

transform algorithm that previously had only been effective for special

classes of coherent objects; however, it is effective for general
objects having glints that are partially reconstructed by the first two
algorithms.

In the subsections that follow, we briefly describe each of the
three algorithms that make up the imaging approach and show

reconstruction results.

5.2.1 Reconstruction of Glints

In what follows we assume that thE object consists of both a glint
(or multiple glints) component g(x), and a diffuse extended component,

d(x),

f(x) - g(x) + d(x) (5-1)

where x is a 2-D coordinate. It is assumed that the Fourier intensity,

IF(u)1 2 , is detected, where F(u), G(u) and D(u) are the Fourier
transforms of f(x), g(x) and d(x), respectively. From the Fourier
intensity we can compute the object's autocorrelation

rf(x) - [g(x) + d(x)] 0 [g(x) + d(x)] - r 1 [IF(u)1 2]

- g(x) 0 g(x) + d(x) 0 d(x) + g(x) 0 d(x) + d(x) 0 g(x)

= rg(x) + rd(x) + g(x) S d(x) + d(x) 0 g(-x) (5-2)

where 7 denotes Fourier transformation, 0 denotes cross-correlation,
and rf denotes the autocorrelation of f.
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if the glint energy is large compared with th e''energy of the

diffuse component, i.e. if :

SIg(x)12

K ..... . (5-3)F, Id(x)12 :

is on the order of one or greater, then the peaks of rg(x), the
autocorrelation of the glints,,, will exceed the other terms in Eq.

(5-2), enabling the glint information to. be isolated from the other
terms by a thresholding operation (set all values below some threshold
to zero). Once rg(x) is Isolated, then the glints can be reconstructed
as described below.

We model the glints by

g(x) - gm b(x - xm) (54)

where H is the number of glints and b(x) is the impulse response of the

imaging system [or is a delt4 function if g(x) represents the object].

The autocorrelation of the glints is given by

rg(x) a g(x) I g(x)

am- gm b(x - xm + xn) (5d5)

If the glints are spaced nonredundantly, that is if no two vector
separations between distinct pairs of glints is the same, then

rg(xJ - xk) _ ff, b (O) fjfk (5-6)
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where for mathematical simplicity we have normalized so that b(O) - 1.
Eq. (5-6), which embodies the fact that each glint in the
autocorrelation arises from the product of two glint values in the
object, allows the autocorrelation of the glints to be unraveled. This
unraveling can be done in a number of ways, as described in Reference
5.6, Sections 5 to 7. The method we used is a modification of one of
the methods to which Ref. 5.6 alludes. It consists of the following
steps.

1. To find the glints in rf(x) that constitute rg(X), threshold
Irf(x)l to define an autocorrelation support function for rg(X):

r s (x) {.1, where Irf(x)l2 k threshold (5-7)
10, otherwise

Then we assume that r (x) t r (x)rf(x) except at x-O where r
corrupts it.

2. Reconstruct the support of the object glints using the

autocorrelation support trn-intersection [5.6]

rsl(x) -rs(x) rs(x - Xmaxl) rs(x - Xmaxk) (5-8)

where Xmaxl is the location of the maximum of Ir (x)l outside x-O,
and Xmaxk is the location of the maximum of Irg(x~lrs(x)rs(x.xmaxl)
outside xmO and XmXmaxl,

3. Multiply rsl(x) by rg(x), which can be shown to yield either

rs5 (x) r (x) - 1 Ig11 2 b(x) + gk * gm b(x - xm +Xk) (5-ga)
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or i

IgMI2 b(x) Ok gn b (x xk + x) (-gb)

4. Using a second support function, determine Igkl, which •s.the value

at x-0, by the method described In Section 5.1.5. This procedure
is required because r(x)'is Corrupted at x-O by rd(x)

5. Divide Eq. (5-9) by gk I Igkl to get

glint image M; gm b(x- x. + Xk) .(5-1a)

or

" .gn b(x xk + xn) (5-10b)

where (5-10a) represents an mage of the glints (except gk' which
was already reconstructed) and (5-lOb) represents a twin (complex
conjugated and rotated 1800) image of the glints. Eitheris an
admissible solution when only the autocorrelation or the Fourier
intensity is given.

This process of reconstructing the glints is illustrated in Figure
5-1. The object, in Fig. 5-1(a) is a complex-valued, speckled image of
a model of a P72.2 satellite (the diffuse part) with three delta-
function glints artificially added on the middle part of the body of
the satellite. Previously this was thought to be the most difficult
case for imaging using glints. (For a holographic reconstruction there
must be only one glint, and it must be separated from the body of the
satellite.) In this and all the figures, the modulus of the complex-
valued images are shown. Figure 5-1(b) shows the autocorrelation
function computed from noise-free Fourier intensity data. Figure
5-1(c) shows the results of thresholding the autocorrelation function
rf(x) to Isolate r (x), the autocorrelation of the glints. M - 3
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FIGURE 5-1. RECONSTRUCTION OF THE GLINT COMPONENT OF THE OBJECT. (A)
The object having 3 glints; (B) its autocorrelation; (C) threshol ed
autocorrelation; (4) glint component of the image reconstructed from
(B) and (C).
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glints in the object produces M2 -M+1 a 7 glints in rg(x). The five-
step procedure described above was then used to successfully
reconstruct the glints alone, shown in Figure 5-1(d).

This experiment was repeated for several different values of the K-
ratio, as defined by Eq. (5-3). The normalized root-mean-squared
(NRMS) error of the glint reconstructions is plotted in Figure 5-2 for
two different cases: the three glints positioned on the body of the
satellite as described above, and the same three glints positioned Just
off the body of the satellite. The positions of the glints with
respect to the satellite body mado little difference. The glints were
reconstructed accurately (NRMS error < 0.20) for K 1 1.0.

The examples described above were obtained with a simulated object
using simplified delta-function glints. For the case of realistic
diffraction-limited glints (being impulse responses spread over more
than one pixel), a modification of the first step of the 5-step
procedure is required. It involves finding the glints in the
autocorrelation by a process related to the CLEAN method from radio
astronomy rather than by simple thresholding.

At this point there are several possible approaches to using the
reconstructed glint information, g(x), to help to reconstruct the
entire object, f(x). In what follows we describe only one of the
approaches, the one that appeared to be most effective: first obtain a
partial .'econstruction by AF-synthesis, then complete the
reconstruction by the iterative transform algorithm.

5.2.2 AF Synthesis Algorithm

AF Synthesis is a method taken from x-ray crystallographic
reconstruction, adapted by Baldwin and Warner for interferonetric
astronomical imaging [5.7] and further adapted here for coherent
reconstruction when glints are known. It works poorly when little
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about the image is known, but works well when parts of the image are
known well. This is the case If the glints are reconstructed as
described in the previous section.

One iteration of AF synthesis is as follows. At the nth iteration
we assume we know some part gn(x), of the image, where

f(x) w gn(x) + dn(X) (5-11)

and dn(x) is the unknown part of the image. For the first Iteration
gl(x) is the image of the glints reconstructed by the method described
in the previous section and d1(x) is the (unknown) diffuse part of the
object. The modulus squared of the Fourier transform of Eq. (5-11) is

IF(u)1 2 •IGn(U) 2 + Gn(U) Dn(U) + Gn(u) Dn(u) + IDn(u) . (5-12)

Taking the Fourier transform, Gn(u), of gn(x) and multiplying it by
IF(u)I/IGn(u)1 yields

Gn - Gn IFI/IGnI

. [IG., 2 + GnD + + DnI2] G /1G I

Gn D/2 + (Gn 10n 2 + G2 0n)/(21G 12) (5-13)

using a Taylor-series expansion assuming IG.1 large. Therefore

2 2 2

2Gn Gn t Gn + Dn + tGn 1DI + GnDn)/IGGn2 (5-14)
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Inverse Fourier transforming yields

2gn(x) - gn(x) - f(x) + other terms. (5-15)

That is, by subtracting the input image, gn(x), from twice the output

image, gl(x), we reconstruct the entire image, f(x). However, the
"other terms" severely corrupt much of the desired image.
Nevertheless, the brightest points in Eq. (5-15) outside the previously
known image points, gn(x), are most likely to belong to the object,
f(x), rather than to the other terms. Thus we take the brightest new
points resulting from the computation of Eq. (5-15) and add those to
gn(X) to form gn+l(x) which represents a larger known portion of the
image. This is done repeatedly until a reasonably complete partially-
reconstructed image appears.

Figure 5-3 shows the results of the application of AF synthesis.
Figure 5-3(a) shows the same coherent object with three glints on the
body., and Figure 5-3(b) shows the same reconstructed glints as for
Figure 5-1. (Any difference in appearance from Figure 5-1 is due to a
difference in exposures when photographing the images.) Using the
reconstructed glints as g,(x), Eq. (5-15) was computed, the result of
which is shown in Figure 5-3(c). Much of the object is apparent in
Figure 5-3(c), but there is a high level of artifacts. Figure 5-3(d)
shows the improved results after 12 iterations of AF synthesis. The
locations of the points assumed to be known at this stage are shown in
Figure 5-3(e). Further iterations of AF synthesis resulted in little
further improvement.

5.2.3 Iterative Fourier Transform Algorithm

The iterative Fourier transform algorithm involves repeatedly

Fourier transforming an estimate back and forth between the Fourier
domain, where the measured Fourier intensity is reinforced, and the
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FIGURE 5-3. IMAGE RECONSTRUCTION BY THE THREE-ALGORITHM METHOD. (A)
The object; (B) the reconstructed glints (from Figure 5-1); (C) output
from one iteration of AF synthesis; (D) output from 12 iterations of AF
synthesis; (E) locations of points assumed to be known in (D); (F)
image reconstructed by the iterative transform algorithm staring with
(D).
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image domain, where a support constraint is enforced. The support
constraint, i.e. knowledge that the image is zero outside some well-
defined area, can be derived from the autocorrelation of Lhe object
[5.6]. The details of the iterative Fourier transform algorithm are
described elsewhere [5.2,5.8,5.9]. The partially reconstructed image
shown in Figure 5-3(d) was used as an input to the iterative Fourier
transform algorithm for which we employed a supports constraint in the
form of a crude rectangle inside of which the object loosely fit. The
image reconstructed by the iterative Fourier transform algorithm is
shown in Figure 5-3(f). It is an excellent reconstruction of the
object shown in Figure 5-3(a), despite having assumed total loss of
phase information and despite the fact that the glints were in the most
unfavorable locations. (Prior to this work it was thought that
multiple glints imbedded within the object would be the most difficult
case.)

This experiment was repeated for several K-ratios (glint energies),
and the results are shown in Figure 5-4 and plotted in Figure 5-5.
Very recognizable images were reconstructed for K k 2 (image NRMS error
5 0.35). For K a 5, the simulation experiment was repeated for various
levels of photon noise in the intensity data. The results are shown in
Figure 5-6 and plotted in Figure 5-7. Recognizable images were
reconstructed for 107 or greater photons per intensity array of 128 x
128 samples (or about 60 x 40 - 3200 speckles), equivalent to about 600
photons per sample or 4000 photons per speckle.

5.2.4 Summary of the Three-Algorithm Method

Prior to this work, coherent image reconstruction from a single
snapshot of far-field laser speckle intensity data was possible if the
object included a single well-separated (holographic) glint or a very
bright glint beyond the edge of the diffuse part of the object. We
have developed an approach for reconstructing objects having much less
favorable glints, including multiple Olints that may be located within
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FIGURE 5-4. IMAGES RECONSTRUCTED BY THE THREE-ALGORITHM METHOD FOR
VARIOUS GLINT ENERGIES (K-RATIOS). (A)-(D) Three glints off the
object, (E)-(H) three glints on the object.
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FIGURE 5-6. IMAGES RECONSTRUCTED BY THE THREE-ALGORITHM METHOD FOR

VARIOUS PHOTON LEVELS. K-5 and three glints on object.
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the diffuse part of the object. The approach consists of three

successive algortthms: (1) a triple intersection of the autocorrelation
function that yields an image of the glints alone, (2) the AF-synthesis
algorithm that uses the image of the glints together with the Fourier
intensity data to yield a partial reconstruction of the entire image,
and (3) the iterative Fourier transform algorithm that uses the

partially reconstructed image together with the Fourier intensity data

and a support constraint to complete the reconstruction. For the
example investigated having three delta-function glints, good
reconstructions were obtained for K - (glint energy)/(diffuse/energy) k

2 and 4000 photons per detected speckle (i.e., a relatively high light
level).

Further research is required to optimize the approach and to
quantify performance for diffraction-limited (as opposed to delta-

function) glints, to extend the method to work for extended glints, and
to demonstrate the method on laboratory experimental and field data.

5.2.5 Determining IgkI for Glint Reconstruction

To determine the value of the first glint, I190, perform the

following steps.

1. Sum over the squared modulus of rsl(x)rg(X) for mjk:

Ck 2 Igmig2  . 1k 1ki2mZ-- Ig -2 Ik . (5-16)

2. Reconstruct a second image support:

rs2 (x) - rs(x) rs(x - xmaxl) rs(xmaxj) (5-17)

where Xmaxi is the location of the largest peak of rs(x)rs(x -

Xmxl )rg (x that is outside rsl(x).
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3. As in Step 1, sum over the squared modulus of rs2rg(X) for nOJ:

Cj - IgjI 2 n Ignl 2 " IgJIzn Z Ignl 2 " Igl 4  
. (5-18)

4. Let

CJk - r(xmaxl) m r(xj - Xk) - gjgk , (5-19)

5. Solve Eqs, (5416), (5-18) and (5-19) for Igkl 2 :

C - c 12 1/2'gk12 c~ k Ita_ k 2

19k12 " IC I1

6. Assume that gk has zero phase (we can arbitrarily set any one phase
value to whatever we want):

gk " .' (5-20)

Note that a simple method is possible if the object had no diffuse

part; however, the diffuse part of the object will usually make a
strong contribution to rf(O). making this 5-step method necessary.

5.3 RECONSTRUCTION WITH ONLY THE ITERATIVE TRANSFORM ALGORITHM

Although the three-algorithm method discussed in tho previous
section is generally the most robust way to reconstruct an object
having glints from a single snapshot of Fourier intensity data, it is

also possible to reconstruct using only the iterative transform

algorithm (the third algorithm). In this case it is assumed that by

inspection of the autocorrelation function, computed from the measured
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Fourier intensity, we can determine that there are one or more glints

in the object. Furthermore, if there are two glints, then the
separation of the glints can also be determined from the

autocorrelation.

To start the iterative transform algorithm, two different starting
estimates were tried. First, since the autocorrelation function
contains the desired image as one of its terms (as described in Sect.
5.3), we chose as an initial estimate a windowed version of the
autocorrelation function. Second, we chose the initial estimate to be

a bright glint (or glints) surrounded by random noise. In practice the
latter initial estimate worked better. It was assumed that the
approximate location of the glint (or~glints) was known.

Figure 5-8 shows reconstruction results for the case of a single
bright glint added near the top center of the speckled satellite image.

Thes$upport constraint, assumed known a priori, was a rectangle'Just
enclosing the object with the glint. A plot of the novihalized RMS

error of the reconstructed images as a function of the K ratio is shown
in Figure 5-9. The reconstructions are very good for K greater than
0.25. These reconstructions are better than those of the previous
section because (1) since there Is only one glint, that single glint
contains all the energy implied by the K ratio, making It relatively
brightef, than any of the three glintC for the previous case, for any
given value of K, and- (2) reconstructioh from three' glints is
inherently much more difficult than from a single glint. For the cases
of K - 1i0 and*0.5, Poisson noise was added to the Fourier intensity
data. The errors in the corresponding reconstructed images is shown in
Figures 5410(a) and (b) respectively.

Figure 5411 shows reconstruction results for the-case of a pair of
glints, one of which is in the same position as the case above, and the
second is nearer to the center of the object. Figure 5-12 shows a 'plot
of the normalized RMS error as a function of glint strength. Very good
reconstructions are obtained for K > 0.5.
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FIGURE 5-8. IMAGES WITH A SINGLE GLINT RECONSTRUCTED BY THE ITERATIVE

TRANSFORM ALGORITHM, FOR VARIOUS K RATIOS.
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FIGURE 5-11. IMAGES WITH TWO GLINTS RECONSTRUCTED BY THE ITERATIVE

TRANSFORM ALGORITHM, FOR VARIOUS K RATIOS.
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Diffraction effects due to the aperture are not included in this
simulation. The inclusion of diffraction effects would yield poorer
performance; further research is needed to develop improved algorithms
for this case.

5.4 RECURSIVE AUTOCORRELATION ALGORITHM

Initially a recursive autocorrelation-based reconstruction
algorithm was investigated. It was later overshadowed by the
algorithms described above, but we include It here for the sake of
completeness.

We assume that the object has a single glint of magnitude a and a
diffuse part, d(x), so that it can be modeled as

f(x) - a 6(x) + d(x) (5-21)

and its autocorrelation function as

rf(x) - lal2 6(x) + rd(x) + a* d(x) + a d*(-x) (5-22)

which coptains within it a representation of the diffuse part, d(x),
multiplied by a*. Unless the glint satisfies the holography condition,
however, the other terms will overlap the desired term, a* d(x), making
it not immediately available. If the glint does not satisfy the
holography condition but is to one side of d(x), then only the term
rd(x) overlaps the desired term. UUnder that circumstance, the
following recursive reconstruction algorithm is possible. After
estimating the glint strength, first estimate a* d(x) by windowing one
side of rf(x). Then form a second estimate by subtracting from rf(x)
an estimate of rd(x), computed from the estimate of d(x), and windowing
the result. This process is continued until no further changes are
made. In practice this method requires a strong glint and was not as
successful as the methods described ip the previous sections.
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5.5 EFFECT OF GLINT STRENGTH ON DATA QUANTIZATION ERROR

It is assumed that the laser-illuminated object has a glint

component and a diffuse component. It may be that the glint, say from
a flat panel, appears only for certain angular orientations of the

object. A problem is that the energy from the glint can far exceed the

energy from the entire diffuse component of the object. Then aperture-
plane detectors having a finite dynamic range (or a finite number of

quantization levels) may have the Information about the diffuse
component overwhelmed by the energy from the glint. In this section
this problem is analyzed.

For the case of a single glint, the model for the object is again

f(x) - a 5Ix) + d(x) (5-23)

which has Fourier transform

F(u) a a + D(u) (5-24)

where D(u) is a zero-mean Gaussian random variable with variance r2.

The detected quantity is the Intensity

IF(u)12 - la + D(u)1 2

a a2 + 2 a Re[D(u)] + ID(u)1 2 , (5-25)

where we have used the fact that the phase of the glint, a, can,

without loss of generality, be set to zero. Letting w w IF(u)1 2 and g
a2 , the intensity follows a modified Rician or non-central Wishart

distribution:

pw(w) - (2r)"1 exp[-w/(2w2)] exp[-g/(2e 2)] _o__W_/2l (-2
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To simplify this further, we can define intensities normalized to the
energy in the diffuse part '6f the' object: repjacing w/(202) by.w and
g/(2u2 ) by g; we have

p (w.) e-w'ein9 i0 2rwi) .. (5-47)

The mean and variance of w are I +.g and I + 2 g, respectively.

The assumed quantization operation is illustrated in Ftgure 5-13,
which shows a linear quantizer with an offset 7 and N quantization
intervals, each of width Aw. For a given value of the relative glint
strength, g, the mean-squared error due to the quantization rule on the
probability distribution pw(w) can be numerically computed.

Optimum quantizers were derived for two cases: no glint' and a very
strong glint. This was accomplished by arriving at a signal-to-noise
expression as a function of N, Aw,* and*7, and then solving nonlinear
equations for the optimum Aw and 7 using Newton's method. The results
are suimarized., in Table 5-1., -

Table 5.1 Optimum Quantizer Intervals

For zero alint For large glint
N _ SRN(db).- .Sw 5RN(db)

256 .04368 37.27 .03076 40.57
512 .02402 42.43 .01650 46.04

1024 .01341 4.7.65 .00879 51.55
2048 .00734 5?&94 .00465 67.11'
4096 .00399 58.28 .00245 62.71

The signal-to-noise ratios (SNR's) of four quantizers were compared
for the case of ac:detignoptimized for g * iO,Obo (an'enormous maximum
glint strength), for various values of N from 256 to 4096., and for
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values of an actual glint strength of 0, 10, 100, 1,000, and 10,000.
The results are shown in Table 5.2. From this table it can be seen
that with a fixed step size (optimized for g - 10,000), the SNR for the
smaller values of g is very poor. The addition of a dynamic, optimum
step size yields dramatic improvement in SNR for the smaller-glint

cases. The same effect as a dynamic step size can be achieved by an
automatic gain control (say, attenuating the liht arriving at the
detector when the glint becomes very bright). The addition a dynamic,
optimum offset yields additional gains in SNR, especially for the
brighter-giint cases.

The reason that automatic gain control is important is seen from
the fact that in the second term, the information-carrying quantity, of

Eq. (5-15) is multiplted by the glint strength.

The major conclusion from this study is that in order to allow for
very large glints, we should have a dynamic or adaptive quantizer. The

most important feature of the dynamic quantizer would be a variable
step size gW. Thit could be achieved by an automatic gain control.
Helpful, but less important, is to allow for a dynamic offset 7. The

results were derived for very large glints; the optimization of the
quantizer for intermediate-strength glints, which are likely to occur
in practice, would require additional research.
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6.0 IMAGING WITH PARTIAL PHASE INFORMATION

In this section and in Section 7, we describe methods developed for
using partial phase information in the phase retrieval/image
reconstruction process. For the most difficult objects to reconstruct
(complex-valued, having no glints or separated parts), some additional
information is essential to obtain a reliable reconstruction, given our
present algorithms. One kind of such additional information Is partial
phase information. Partial phase information can come, for example,
from an imaging system that inherently measures or determines the
phase. If the partial phase information is nearly complete, so that
using that phase yields a useful image, then the phase-retrieval
processing can be thought of as a way t:clean up the image to improve
its quality. This is equivalent to reducing the errors or filling in
the gaps in the given partial phase information. If the partial phase
information Is very incomplete or noisy, then no useful image would
result from it, and the phase-retrieval processing would be forming the
image in the first place, with the partial phase information helping it
to succeed.

Two major cases of partial phase information were considered: (1)
phase known well over a small aperture, and (2) noisy phase over the
entire aperture. In the first case, it is a matter of filling in the

missing phase, but most of the phase is missing. In the second case,
it is a matter of correcting the errors in the given phase.

Two scenarios that would correspond to the first case are as
follows. Suppose that the object is coherently illuminated with a
laser, and intensity measurements are made in an aperture plane of the
opti"cal system. In addition, optical field measurements are made over
a smaller aperture imbedded in (or contiguous with) the intensity
measurements. The optical field measurements could be performed, for
example, by heterodyne detection or by two intensity measurements in
different planes and the fields reconstructed by the Gerchberg-Saxton
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algorithm. These optical fields' would be aberrated by atmospheric
turbulence. In addition, the small aperture would also have a
wavefront sensor that measures the atmospheric wavefront error.
Aberration-free optical field data could be obtained over the small
aperture by subtracting the phase due to the atmosphere from the phase
of the measured optical field.

The secohd scenario represerting the first case would be for a

system in space having a small, diffraction-limited telescope making
optical field measurements, imbedded in a larger 'aperture over which
the aperture-plane intensity measurements are made. In this case a
wavefront sensor would not be needed since there would be no
atmospheric turbulence to aberrate the optical data for the small,
diffraction-limited telescope.

Many differbnt imaging"systems could provide data for the second
case, that of noisy phase known over the entire aperture. They include
active imaging 'modalities such as the Itek/Western system, triple
correlation of aperture-plane intensity, and FOCI and passive imaging
modalities such as astronomical speckle interferometry using triple
correlation and aperture-plane interferometry using phase closure.

The basic approach to phase retrieval and image reconstruction
taken for these scenarios was to use the'iterative Fourier transform
algorithm to take advantage of all the available data and constraints
to form the solution. This approach allows for the combination of a
variety of disparate types of information, such as Fourier modulus
(square root of intensity), Fourier phase, object-domain support
(finite extent) constraint, and nonnegativity (applicable for
incoherent images). For the case of *phase know well over a small
aperture, a variation of the Iterative transform algorithm, called the
expanding-weighted-mask algorethm, was developed. This' initial attempt
with the expandingýweighted-mask algorithm ýavý results that were only
partially successful: they "were promising but very preliminary and
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incomplete. (In a separate, later program funded by the Naval Research
Laboratory, this approach was expanded upon and optimized, and yielded
very good reconstructed images.) Those preliminary results are
described in Section 6.1. For the case of noisy phase over the entire
aperture, a variation of the iterative transform algorithm, called the
phase variance algorithm, was developed, as described in Section 6.3.
In addition, an alternative, entirely new approach was developed for
that case: 2-D shear averaging, which is described in Section 7. One
other case that was briefly explored was that of knowing one bit of
phase. In that case, reconstruction was easily achieved with a
windowing of the initial image computed from the given phase followed
by cleaning up with the iterative Fourier transform algorithm. This
last case, mostly of academic interest since it does not naturally
occur in currently known imaging sensors, is described in Section 6.2.

6.1 THE EXPANDING WEIGHTED MODULUS ALGORITHM

If the Fourier intensity is measured over a large aperture and the
phase is measured over a small aperture imbedded in the large aperture,
then it is possible to use that known phase. to help to retrieve the
phase over the large aperture. This can be accomplished by enforcing

the known phase together with all the other available information
(Fourier modulus, object support constraint) using the iterative
Fourier transform algorithm.

The support constraint can be gotten from the available data in one
of two ways. First, one can use a triple intersection of the
autocorrelation support computed from the Fourier intensity to put an
upper bound on the support of the object [6.1]. Second, from the
small-aperture phase combined with the measured intensity over the
small aperture, one can gets a diffraction-limited, but low resolution
(owing to the small size of the aperture) image. A support constraint
can be formed by an appropriate thresholding of this low-resolution
image.
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The initial estimate for the iterative transform algorithm can be
gotten by simply using the complex-valued low-resolution image or by
filling the support constraint with complex-valued random numbers.

When the Iterative transform algorithm was run with either of the
two initial estimates and using either of the two support constraints,
and enforcing the small-aperture phase, it stagnated without converging
to a solution. Essentially random phases were produced outside the
small aperture. Since the ratio of the area of the large aperture to
that of the small aperture was chosen tb be a large number, the random
phases outside the small aperture overwhelmed the influence of the
correct phases within the small aperture.

In order to combat this problem, we began development of the
expanding weighted modulus algorithm. It consists of the following
steps. First the Fourier modulus (the square root of the measured
intensity) is multiplied (weighted) by an apodizing function that goes
to zero over an area only somewhat larger than the area of the small
aperture. Then several iterations are performed. The idea is that
with the weighting function in place, the known phase will not be
overwhelmed by the unknown phase, which now exists over a much smaller
area than before, and furthermore has an associated magnitude that is
weighted down in the area of the unknown phase, further reducing its
influence. Thus the known phase has a chance to be useful as a
constraint that helps to retrieve the unknown phase over the larger
area. Next the weighting function is replaced by a weighting function
that is nonzero over a wider area. Then more iterations are performed,
retrieving the unknown phase over this wider area.. This process of
widening the weighting function and performing more iterations is
repeated until the weighting function is nonzero over the entire large

aperture, at which point the entire phase is retrieved and a fine-
resolution image is reconstructed.
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Several trials of the expanding weighted modulus algorithm were

made, and, while the results showed promise, the images that were

produced were far from diffraction limited. For these experiments, the

weighting functions were chosen to be either rectangle functions or

triangle functions, and the number of intermediate weighting functions

used was swall. (These inititl results were greatly Improved upon in a

separate effort, in which it was found that by using weighting

functions with continuous derivatives and using a very much larger

number of intermediate weighting functions, the reconstructions could

be reliable and of high quality [6.2]).

6.2 RECONSTRUCTION WITH ONE BIT OF PHASE

Orne bit of phase information, which is equivalent to knowing the
sign of the real part of the Fourier transform, is well known to

contain considerable information. First of all, if the image is
"causal," i.e., it is located completely to one side of the optical

axis, then the inverse Fourier transform of the Fourier modulus

combined with the one bit of phase yields an image plane with th'e
following components: the desired image, the twin (complex conjugated
and reflected about the origin) of the desired image, and noise and

artifacts. The strength of the noise and artifacts depends on the
degree of oversampling of the Fourier modulus data. With a high degree
of oversampling the noise and artifact level can be very low, yielding

a good-quality image immediately. This is illustrated in Figure 6-1,
which shows the object (a) and the image reconstructed by inverse

transforming the Fourier magnitude plus one bit of phase (c). For
comparison, Figure 6-1(b) shows the inverse transform of a constant
modulus with the one bit of phase. The quality of this latter image
shows that the one bit of phase without any modulus information is very

useful indeed. Figure 6-1(d) shows the result of using a windowed

version of Figure 6-1(c) as an initial estimate, then performing
several iterations of the iterative transform algorithm using a support

constraint in order to refine the phase. The iterative transform

algorithm successfully removed most of the noise and artifacts.
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FIGURE 6-1. RECONSTRUCTION WITH ONE BIT OF PHASE. (a) Object, (b)
image from a constant modulus combined with one bit o01 phase, (c) image
from the correct modulus combined with one bit of phase: (d) image
reconstructed by the iterative Fourier transform algorithm using (c) as
an initial estimate.
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From Figure 6-1 we see that one bit of phase information is very
powerful information, and that what noise and artifacts it Introduces

can be easily cleaned up by the iterative Fourier transform algorithm.

Unfortunately, none of the sensors presently under development yield an
accurate measure of one bit of phase, so the results shown in Figure
6-1 are presently of academic interest only.

6.3 PHASE VARIANCE ALGORITHM

In what follows is described a modification of the iterative
transform algorithm which uses a poorly-known phase across the Fourier-

domain aperture.

Let the object and its Fourier transform be f(x) and F(u) - IF(u)I

exp[it(u)], respectively. Suppose we measure

Go (u) - IGo(u)I exp[iG(u)]

- F(u) exp[tie(u)] - IF(u)I expfi[t(u) + 0e(u)]} (6-1)

where Oe(u) is a phase error with known (or known approximately)

variance a. So the measured (noisy) phase is

6(u) - [9(u) + Oe(u)]mod 2w ' (6-2)

The image gotten by inverse Fourier transforming Go(u) would be go(X),

a blurred image.

We seek ways to improve the phase estimate over that given by the
measurement 0(u). This may be accomplished by the iterative Fourier
transform phase retrieval algorithm which uses additional information
in the object domain, such as nonnegativity and/or support constraints
to infer the true phase of F(u). Two approaches are described next.
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The first approach i~s tb -peff64thtIe usual phase retrieval
algorithm,-typically cycles 'of hyb$1'i 'tnput'-output (HID)'and e .rror I

reduction (ER), and-simply use 9(u) as ýthe initial estimate for 'the
Fourier-domain phase. The Fourier-domain constraint would be the
measured modulus IGO(u)I - IF(u)g.

The second approach is to constrain the phase durilng the Iterations
to lie near e(u). Constraining the phase' to eq'ual 6(u)' doe's'no good
since one would simply get the blurred image with no chanqe. Instead
it is more useful to allow the phase to wander' from 0(u), but not let
it wander too far. This can. be'actomplished using tbe phase var iance.
algorithm, which is described as follows. In the Fourier domain, As
well as constraining the modulus to e qual IF(u)I, constrain the phase
to not differ from 9(u) by more than ca, where c,' the variiavce factor,
Is a real constant on the order of unity. In order" to' account for 2w
ambiguities, this should be performed as follows, where # is the phase
of the Fourier transform of the input object to the iterativ'e 'loop and
~'is the altered phase:

0 c (0 -)Nod 2w co (6-3)

60 +cc )mod 21r> cc

-VCLIP((# -9) mod 2r, -ca, ca] + 9 (6-4)

where
fb a <b

VCLIP(a, b, c)u Ia b, b a Ic (6 5)
Ic a > c

is a. Numerix array processor math' librar'y Nkiot:oýt. (A 'donvenleht WAY
to perform the modulo 2jr function, is~Ibyltbe suctek's*'e o~eritions RECO
and POLAR, which-converts the modulA/Oij~ase t6 ria '/Iiaig'inary and 'then
back to modulus/phases,) -This Foujier d6niaino'peI'4tftoA'-is illustrated
in Figure 6-2.
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Several variations of the phase variance algorithm were attempted.
for both the cases of a real, nonnegative object and a complex-valued

object. In the object domain we can use either the hybrid-output ("10)

or error-reduction (ER) algorithm while one employs the phase variance.

algorithm in the Fo'urierýomaisn. We refer to these two combinations as
PVHIO-ant PVER,, respectively,. MAIthough HIO usually outperforms ERywe,

found that OVER usually outperformss.PVHIO.

Several values of the variance factor c were tested. -The value of

c should be small enough to reinforce the given phase values, but large

enough to allow the phase the, freedom to adjust to become more

consistent with the more accurate Fourier modulus'data. Generally c in

the range of 0.6 to 1.0 worked the best. Increasing or decreasing the

value of c as the iterations progressed 'did not seem to improve
convergence.

Two different initial estimates were tested. One was the image

go (x) obtained using the noisy phase. estimate... .This is equivalept tp
starting in the Fourier domain with phase 0' 0 9, the noisy phase. The

second was an image consisting of the support constraint filled with

uniformly distributed random numbers. Most" often the noisy-phase

initial estimate performed better, than the random initi&t*estimate.

It was found that the phase variance algorithm would improve the
estimate for several iterations, and then it would stagnate. The

reason for the stagnation appears to be that the outlying noisy phase
values for which the phase error 10el > ca are inconsistent with the

phase variance constraint [Eq. (6-3)]. We found it best to stop"
enforcing the phase variance constraint at this point and thereafter to
only enforce the Fourier modulus constraint (along with the image-

domain support constraint). That is, after the phase variance
algorithm stagnates, continue with the traditional iterative transform

algorithm, using cycles of HIO and ER.
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After testing numerous combinations of algorithm types and
algorithm parameters, we arrived at the following combination that
seemed to work the best on average. Perform twenty iterations of PVER
with c - 0.8, then ten iterations of ER, and finally several cycles,
each cycle consisting of 20 HIO (beta - 0.7) and 10 ER, until
stagnation (no further progress) occurs. After every other cycle,
enlarge the support constraint by adding to it each nearest-neighbor
pixel that was previously outside the support. In order to reduce

sidelobes in the image, to make the support constraint more effective
when diffraction effects are included, the Fourier modulus should be

weighted with an apodizing function. For the experiments described in

what follows, we used a weighting fUnction proportional to the
autocorrelation of a circle [giving an impulse response of the form

(Jl(r)/r)2 to the complex image].

The progress of the iterative transform algorithm is monitored by

computing the object domain error metric,

ODEM - (6-6)

x

where 7 is the set of points at which g'(x) violates the object-domain
constraints. It is a measure of how close the output image, g'(x), is

to. satisfying the object-domain constraints. For these digital

simulation experiments, in which we also know the actual object, we can
also compute the absolute error,

Ig'(x - xs) - f(x)l 2

ABSERR x . m 1 f(x)12 (6-7)

x
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where x is the shift. of the output image g'(x) that maximizes its

correlation with the true object f(x). FoW images that 'are

recognizable and have some utility, ABSERR is typically below 0.5. For
images that are good representations of the object, ABSERRtis typicqllly

about 0.3 or less.

Figure 6-3 show ABSERR as a function of Iteration number fqr the
case.of using the original, iterative transform algorithm with a, random
initial estimate, for the case of a real-valued, nonnegative object
when there is no Fourier phase 'information. Each curve represents a
different trial of the algorithm with a different random start. F6r
the majority of the cases the HIO algorithm converges to a good image,

whereas the ER algorithm rarely does for real, nonnegative, objects.
When, the algorithm was started with .a nbisy phase estimate, without

reinforcing it during the iterations, it did not improve the

perfrmance significantly.

Phase errors used for these experiments were generated using
McGlammery's method [6.3]. These phase errors are similar to those
that would result from atmospheric turbulence. The adjustable

parameters of the phase errors are the standard deviation, o, and the

correlation length, corl.

.Fig.utre 6-4 shows the convergence (On terms of ABSERR) of the phpFe
variance algorithm for several values of the variance factor, c. From.

this we see that the optimum value of c for this case is about 0.8 to

1.Q. Figure 6-5 shows the same thing in terms of ODEM. "Although the
values of ODEM are typically much less than the values of ABSERR, they
correlate fairly well with the values of ABSERR.

Figure 6-6 show blurred images and Images reconstructed by the
phase variance algorithm for three different phase errors for the case
of a real, nonnegative object. In all three cases, with no noise on
the Fourier modulus, the quality of the reconstructed images was the
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Reconstruction Using the Original Iterative Algorithm
Random Inputs
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FIGURE 6-3. CONVERGENCE OF THE STANDARD ALGORITHKS4
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ReconstruCtion Using Phase6 variance Algorithm
= 27r/4, corl=6
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Reconstruction Using Phase Variance Algorithm
a = 2tr/4, corl=6
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FIGURE 6-5. CONVERGENCE (ODEN) OF THE PHASE VARIANCE ALGORITHM FOR
VARIOUS C.
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FIGURE 6-6. RECONSTRUCTION OF REAL, NONNEGATIVE IMAGES BY THE PHASE
VARIANCE ALGORITHM. (a) Object; (b) support constrain; (c)-(d) blurred
images, with (c) phase errors a u r/2 radians and corl - 6 pixels, with

(d) a - x/2 and corl - 30, and with (e) a - r/5 and corl - 6; and (f) -

(h) corresponding images reconstructed by the phase variance algorithm.
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same in all three cases, although the convergence was faster.for the
cases with the smaller given phase error,

The reconstruction of complex-valued objects is much more difficult
since one no longer has the powerful nonnegativity constraint. For the
complex-vdlued, speckled versions of the object shown in Figure 6-6,
the conventional iterative transform algorithm, when starting with a
random initial estimate,, failed to reconstruct a'recognizable image.
When the noisy phase was used to start the algorithm, however, the
conventional iterative transform algorithm improved the image quality
substantially, although the reconstructed image remained imperfect.
The phase variance algorithm similarly reconstructed a substantially
improved, but imperfect image. The results from the phase variance
algorithm were slightly better than those of the conventional algorithm
for these cases. This is Illustrated by Figures 6-7 to 6-9.

Figure 6-10 shows the convergence for the case of Fourier modulus
data corrupted by photon noise. The iterations improved the RMS error
of the image for the cases of more than 120 photons per aperture-plane
speckle (or 105 total photons). However, for lower light levels, the
algorithm can make the image worse. This happens when the Fourier
magnitude data are noisier than the phase data; then adjusting the
phase to be more consistent with the noisy modulus data is
counterproductive. In such a case it would actually make sense to
adjust the modulus to be more consistent with the phase data. Figure
6-11 shows the RMS error of the reconstructed image as a function of
the total number of photons. Figure 6-12 shows three of the
reconstructed images. 3 x 105 total photons (120,photons per speckle)
"were required to obtain improved imagery.

In summary, we have developed a new variation, the phase variance
algorithm, of the iterative transform algorithm which reconstructs a
fine resolution image when degraded Fourier phase data is available.
For real, nonnegative objects it converges faster and more reliably
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Reconstruction Using Iterative Phase. Retrieval; Algorithm
No Phase Information vs. Noisy Phase Input
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FIGURE 6-7. CONVERGENCE OF THE CONVENTIONAL ALGORITHM FOR A COMPLEX-.
VALUED OBJECT.
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Reconstruction using Phase Variance Algorithm
No Phase Information (Reg. recon.) vs.

Noisy Phase Input, Phase Variance Algorithm
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FIGURE 6-8. CONVERGENCE OF THE PHASE VARIANCE ALGORITHM FOR A COMPLEX-
VALUED OBJECT.
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FIGURE 6-9. RECONSTRUCTION OF COMPLEX-VALUED IMAGES BY THE PHASE
VARIANCE ALGORITHM. (a) Object; (b) support constraint; (c) image
reconstructed with no phase information; (d)-(f) blurred images, with
(d) phase errors o = 7/2 radians and corl = 30 pixels, with (e) a * r/5
and corl = 6, and with (f) a = w/5 and corl - 30; and (g) - (i)
corresponding images reconstructed by the phase variance algorithm.

128



Reconstruction Using Phase Variance Algorithm
ca = 2r100, corl 6

Poisson noise added to Fourier magnitude
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FIGURE 6-10. CONVERGENCE OF THE PHASE VARIANCE ALGORITHM FOR A
COMPLEX-VALUED IMAGE FROM NOISY FOURIER MODULUS DATA. For or w15 and
corl - 6.
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Reconstruction using: Phase Variance AI9orith
Poisson noise added to'Fourier intensity
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FIGURE 6-11. RMS ERROR OF THE RECONSTRUCTED IMAGES AS A FUNCTION OF

THE TOTAL NUMBER OF PHOTONS.
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4

FIGURE 6-12. RECONSTRUCTION OF COMPLEX-VALUED IMAGES BY THE PHASE
VARIANCE ALGORITHM. (a) - (c) Noisy Fourier modulus estimates (their

squares, the intensities, were subjected to photon noise), with (a)

107 (b) 106, and (c) 3 x 105 total photons; (d) - (f) images degraded
by the phase error; and (g) - i) the corresponding recooistruct'ed
images.
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than the conventional iterative transform algorithm. For complex-
valued objects, which are difficult to reconstruct, it reconstructs
images of quality substantially better than that of the blurred images
given by the available noisy phase data.

Other variations of the phase variance algorithm are possible which
may yield improved performance. Rather than using a formula for the
new phase estimate such as Eq. (6-3) which abruptly changes at a
threshold value, it may be better to have a formula that changes
continuously and smoothly with the data. An example of such a formula
would be

'- + cI lnD + - 9h/(cu)] sign(# - 9) (6-8)

which is approximately equal to # for I1 - 61 << cu and departs slowly
from the neighborhood of 9 when I# - 01 >> cc.

Another interesting possibility is to use the same type of
operation on the modulus of the Fourier transform. That is, rather
than substituting the measured Fourier modulus for the computed Fourier
modulus, allow the Fourier modulus wander from the measured value
according to the amount of noise present in the Fourier modulus data.
Such an algorithm would reconstruct the phase from the modulus or the
modulus from the phase depending on which has the higher signal-to-
noise ratio at any given point in the Fourier domain.
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7.0 2-D SHEAR AVERAGING

Shear averaging is an algorithm invented at ERIM [7.1] originally

for correcting one-dimensional (I-D) phase errors, as occur in

synthetic aperture radar,(SAR). Here we generalize it and apply it to

the case of 2-D phase errors as would be encountered in Imaging

satellites as described in Section 6. In what follows it is seen that

a 2-D extension to shear averaging is feasible if the phase errors are

slowly varying.

7.1 2-D SHEAR AVERAGING THEORY

7.1.1 The 2-D Shear Averaging Algorithm

As in previous work (7.1], let the ideal Fourier transform be

F(u, v) -IF(u, v)I exp~it(u, v)] (7-1)

and the actual, measured Fourier transform, with phase errors 0S(u, v)
be

G(u, v) - F(u, v) exp[ioe(u, v)] (7-2)

where u 0 0, 1, ... , N I - 1 and v - 0, 1, ... , Mo - 1. For these 2-D

phase errors we form the shear average

Soa(ue v) * (u',VB GBUV , v) G*(ug, v' - a) (7-3)

where Buy is a set of points (U', v') (the region of summation)

centered at (u, v), and a is a lag smaller than the speckle size

(correlation length) of F. More generally a weighted summation can be

performed. Henceforth the symbol B under the summation means (u', v')

SBuvy
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In the earlier work [7.1] It was assumed that the phase error is
one-dimensional (1-D), i.e., te(uv) - Oe(v). Then one can sum over
one entire line, i.e., Buy consists of (u',v), u' - 1, 2t ... , No,
where No is the number of samples in the u-dimension. Then Soa(u,v) -
Sa(v) is a function of v only and its phase can be summed to estimate

Oe(v) 7.l1). The next most complicated case is for the phase error to
b.e 2-D but separable, i.e., ,e(U,V) • Oeu(u) + #,,n(v). If one performs
the summation of Eq. (7-1) again over one entire line, one again gets
the same result as for the 1-D case: Soa(uv) - Sa(v) is a function of
v only and its phase can be summed to estimate Oev(V). Similarly the
phase of Sbo(u) [see Eq. (7-8)] can be summed to estimate Oeu(L,).
Consequently the separable case can easily by handled as two 1-D
problem with errors in each dimension the same as for the 1-D case
[7.1]. In what follows we consider the fully 2-D case.

If the fully 2-D phase error 0,(uv) is smoothly varying, then we
can consider a region of summation Buy having an area over which 0. can

be approximated by a Taylor-series expansion including only linear
terms:

ie(U', v') -tie(u, v) + clO(u, v) (u' -u) + c01 (u, v) (v' - v) . (7-4)

(Later we will consider the effect of higher-order terms.) Inserting

Eqs, (7-2) and (7-4) into Eq. (7-3) and simplifying yields

5oa(u, v) - exp[la col(u, v)] F(u', v') F*(u', v' - a) . (7-5)

As in the 1-0 case [7.1], provided that the area of summation is large
enough, we can approximate the summaLloe by the ensemble average

J(O, a) I j(0, a) '<F(u' v) F*(u v a)> (
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where J(hu, Av), the mutual intensity, is the Fourier transform of the
underlying incoherent image. Then we have

Soa(U, v) exp[ia c01 (u, v)] 1 #(O, a) (7-7)

Similarly

Sbo(U, v) - G(u', v') G*(u' - b, v')

- exp[ib clO(u, v)] I #(b, 0) . (7-8)

Then the phases of Soa and Sbo are

6oa(u, v) - a cOl(u, v) + arg[#(O, a)] + 2w Poa(U, v) (7-9)

and
Gbo(u, v) - b clo(u, v) + arg[/i(b, 0)] + 21r Pbo(U, v) (7-10)

respectively, where Poa and Pbo are integers that allow for the fact
that the phase is computed modulo 2r. If the values of a and b are
chosen to be small compared with the correlation distances of both #
and Oe' then all the terms in Eqs. (7-9) and (7-10) will be small and

Poa a Pbo " 0. In the analysis that follows we will not make this
assumption.

since oa,(u, v) and Obo(U, v) represent phase derivatives, by
integration over 0oa(u, v) and Obo(U, v) one can arrive at an estimate
of Oe(U, v). This could be done, for example, by first integrating in
the v direction for a fixed u, then integrating in the u direction for
each value of v. The geometry and spacings of the regions of summation
BUY can take several forms. In what immediately follows we. give a
simple generic form that lacks detailed accuracy but explains the
principal. For example, suppose BUY is a rectangular area centered at
(u, v) of length m, in the v direction and n, in the u direction. Then
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A

we could compute Oe on a grid with spacings m1 and nB by first summing
in the v direction along u - 0:

80a (0, 0) u 0 (7-11a)

eGa(0, MB) *- m (mB/a) 8oa(0, m'mB)

M B t- C0 1 (0, m'mB) + m(mB/a) arg[/#(0, a))mm

+ (me/a) 2W P *l~oa( 0 , m'mBa) (7-11b)

Next, for each v -mmB we sum over u:

Oe(nne, mmB) (7-12a)

m n
"_m l c0 1 (O' mmB) + no ;:_ clo(n'n, MmB)

+ m(me/a) arg[#(0, a)] + n(ne/a) arg[jv(b, 0)]

m
+ (me/a) 2r p m(Pa(, rn'me)

n

+ (nB/b) 2w n• Pbo(n'nB, me11) . (7-12b)

As long as (mn8/a) and (nB/b) are integers, then the last two, summations
add integer 2r phase which is unimportant and can be ignored. The
m(mB/a) arg[#(O, a)] + n(ne/a) arg['u(b. 0)J are linear phase terms
which shift the image but do not cause blurring, and so they can be
ignored. The first two terms mBEcO0(O, mime) + nB1Zcl 0 (ninB, MYB) are
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sums over the derivative of the phase error which should give a good
approximation to Oe as long as Eq. (7-4) is accurate over each Buy.

Two sources of error cause inaccuracies in Oe: (1) statistical
errors in approximating the finite sum in Eqs. (7-7) and (7-8) by I#
and (2) phase errors #e that have higher-order terms within the region
of summation.

7.1.2 Residual Phase Error Due to Statistical Error

The residual phase error due to the approximation of the summation
over the product of the F's by the ensemble average, which is the error
of arg[#(O, a)] and arg[js(b, 0)], is similar to that in the 1-D case
[7.1] and has standard deviation given by

9a (7-13a)
aa "I p(0, a) I

and
ab (7-13b)

f2N-B I p(b, 0) 1

where in this case NB is the number of independent samples of F in the
region B. For region B of nB by mB samples, NB w (nB/nc) (mB/mc),
where nc by mc is the size of an independent sample of F(u,v)., The
estimate of the phase error across the width mB would be (mB/a) Ooa.
Hence the variance of the phase error estimate across the width mB is

(mB/a)2 a2 a (me/a2) ncmc/[( 2nBmB)Il(O,a)l2]

M mBncmc/(2a2nBl#(Oa)12] (7-14)
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If the total array-size is No M NnB by Me a MmB, then the variance of
the phase error at the far edge of the array, assuming the simple
summation of Eq. (7-11), would be

= IMl m-n mc MMn m
lmBJ 2 a2nB I0,0a)2 2a2nB i#(O,a)12  (7-15)

where it is assumed that the M - (Mo/mB) errors are uncorrelated over
the sum.

A similar result, exchanging m's and n's, holds for summation in
the orthogonal dimension, and so the variance of the error in the
corner farthest from the beginning corner is

2 MonclfAc N2ncm€ (1

"CNM '2a nB IP(Oa)I2 2b2 mB lI(b,O)l'

for the simple summation approach.

Consider the case of nc N mc - 2 samples and a - 1. Then, from Eq.
(7-15) we see that unless nB is comparable to Mo, oM will be
unacceptably large (much greater than one radian).

However, there are multiple paths to sum from 0,(0, 0) to #e(NnB,

MmY). Methods used to reconstruct 2-0 phase- functions from phase
differences (least-squares solutions, for example) can be used here;
then the variance of the residual phase error should be much less than
that given by Eq. (7-16). Since 2-D least-squares methods reportedly
yield a phase-error estimate that has an error comparable to the error
in a single phase-error difference estimate, the variance of the 2-D
phase error estimate should be similar to that of Eq. (7-14).
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Note from Eq. (7-15) that the statistical error of the simple I-D

summation is independent of mnB. Therefore, as far as that error is

concerned, the width of Buy can be anything one desires. Since using a

narrow Buy will reduce the effects of nonlinearities in 0e (which are

analyzed later), it seems that to compute Soa(u,v) one would want to

use Buy of width one sample in the v dimension by nB samples in the u

dimension, where n, is the greatest length that does not run into

severe nonlinearity problems. On the other hand, to compute Sbo(uv)
one would want Buv to be of width m8 samples in the v dimension (the

largest mB that avoids severe nonlinearity problems) by one sample in

the u dimension. Thus we are lead to using very different sets of

points Buv for the summation of Soa and Sbol and different sampling

grids would result as well.

In order to arrive at a rectangular grid from which we could

proceed with a least squares solution, we could first sum across blocks

of width mB of the 9oa and down blocks of width nB of 9bo to get

samples on a grid with spacings nB by mB. The variance of the phase

error across a block of width mB is given by Eq. (7-14). Take the

difference between the phase values at the beginning and end of each

block to estimate the phase difference between those two points. These

would have the same variances as mentioned above. Then we could

proceed with the least squares solution.

However, from Eq. (7-14) we see that when summing over just a
single block of width mB, the variance of the error is proportional to

mB. Therefore it would be best, when using a least-squares summation,

to sum over narrow blocks to reduce the statistical error as well as

the nonlinearity error. This would suggest summing over blocks of

width mc for Oeoa and of width nc for ebo. If the normal assumptions

about the least-squares phase reconstruction were true, then the 2-D

phase estimate variances would be
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(i~a2 ~2 . nm2 [an (,a(a)12] (7-17a)

for the v dimension for which NB - (nB/nc) x 1, and

(nc/b)o"2- nm c/[2b2mB 1/&(bO)1 2 ] (7-17b)

for the u dimension, for which N. - 1 x (mB/mc). However, this ignores
the fact that the error of eoa(uv) is correlated over nB samples in
the u dimension and Gbo(u,v) is correlated over mB samples in the v
dimension. Consequently, the variance of the 2-D phase error estimate

may be closer to ncnmc/[2a 2 1/p(O,a)1 2]. A further refinement of this

analysis will be necessary to arrive at a more precise statement of the

residual phase error for the 2-D case.

7.1.3 Convolutional Processing

An alternative processing scheme is suggested by Eq. (7-3), which
is essentially a convolution of G(u', v') G*(u', v' aj with Boo*
Letting the functional representation of 8uv be

Buv(u', v') - I for (u', v') e B(u, v)
S10 for (u4 , v') i B(u, v)

w B 00(u' - u, v' -v) , (7-18)

Eq. (7-3) can be written

Soa(U, v) = uv' B00 (u' - a, v' - v) G(u', v') G*(u', v' -a)

= [G(u,v) G*(u, v - a)] 0 Boo(UV) (7-19)
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where 0 denotes cross-correlation. More generally, Boo(u',v') could be

a nonbinary function. A cross-correlation can be computed by two

FFT's, a product, and an inverse FFT. For Buy covering just a small

area, direct cross-correlation is more efficient than the FFT method.

By this approach, then, one arrives at Soa(u, v) for each sample of (u,

v) [and similarly Sbo(u, v)], not just for the coarse grid (nnB, mmB).

Integrating or performing a least-squares fit over this fine sampling

of the phase derivative is an alternative to the use of the coarser

grid.

7.1.4 Residual Phase Error Due to Higher-Order Phase Errors

The residual phase errors given by Eq. (7-14) consider only the

result of averaging over a finite number of pixels to estimate the

ensemble average. A second source of error is the fact that the phase

errors are not constant over the area of integration. In what follows
is analysis of that component of the residual phase error.

Now consider phase errors of the more general form

Oe(U', v') = j O cjk(u. v) (u' - u)j (v' - v)k (7-20)

where
Coo(U, v)= - e(U, v) (7-21)

for the region B(u, v). Inserting Eq. (7-20) into Eq. (7-3) yields

Soa(u, v) = G(u', v') G*(ul,' ' a)
B
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* • F(u', v') F(u', v' - a)
B

exppi Cjk(Ue v) (u' - u)j (v' - v)k

- Cjk~u, v) (u- u)J (v' . v 8)k]

- F(u', v') F*(ul, v' - a) expi(ý' cJk(u, v) (u' - u)j

[(v' - v) k- (vI - v - aOk 1

. F(u', v) F*(u', v'- a) exp,(? cjk(u, v) (u'- u)-

•k(v' - Vk-a k k-2 2 +..

() 2) (vI )

+ (-1) k-i akJ) (7-22)

where
k~ kL.i 1  (7-23)

That is, the phase error term cjk(u, v) (u, - u)4 (v' , v)k results in

phase terms in Soa(U0 v) that are jth order in u' and (k -. 0)th, (k -
2)th, ... order in v'. In particular all terms in ie that are zero-
order (constant) in v (k 0 0) disappear, and are therefore

inconsequential.

Specifically, consider the phase error terms through cubic:

#e(u', v') -e(U, v) + c10 (u' - u) + c0 1 (v' - v) + c20(u' - u)2

+ c11 (u' - u) (v' - v) + c0 2 (v' -v)2
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+ c30 (u' - u)3 + c2 1 (u' u) 2(v' - v)

+ c12 (u' - u) (v' - v)2 + c0 3 (v' - v) 3 (7-24)

where Cjk a Cjk(U, v). Then

Soa(U, v) - F(u', Y') F *(u', v' - a)

exp i{Cot a + cl1 (u' - u) a +c02  2a(v' - v) - a2]

+ c2 1 (u' - 02 ai + c 12 (u' - u),[2a(v' - v) - a2]

+ c03 [3a(v' - v)2 . 3a2 (v' - v) +.A3

exp i(cot a - c02 a + c03 a

SF(u', v') F *(u', v' -a)B

exp i{C11 a(u' - u) + 2 c0 2 a(v' - v)

+ C 2  a(u' - U)2

+ c 2 (u' - u) [2a(v' - v) - a2j

+ c 03 [3a(v' - v)2 - 3a2(v' - v)]) . (7-25)

Now make one further assumption. Suppose that when the summation
is replaced by an ensemble.average over the realizations of F, we can
treat the phase error terms as being statistically independent of the F
so we can replace Eq. (7-25) by
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Soa(u, v) T T #(0, a) exp i(co a - c02  +c 0 3

exp i{cH1 a(u' - u) + 2 c02 a(v' - v)

+ c2 1 a(u' - u) 2 + c 12 (u' - u) [2a(v' - v) a2 ]

+ c0 3 [3a(v' - v02 . 3a2 (v, v)]) . (7-26)

Now further suppose that B00 (u', v') is symmetric in u' and in v'
and separable in u' and v'. Then, individually, terms in Eq. (7-26)
that are odd In (u' - u) or (v' - v) will have integrals (sums) of
their Imaginary part that will be zero (making the integral have zero
phase) and no undesired phase terms will result. Consequently, of the
phase error terms explicitly shown in Eq. (7-24), the single terms that
cause undesired phase errors in the s4mation of Eq. (7-26) are those
having coefficients c21 and c03. If we assume small phase error

.contributions due to these terms, we can approximate

exp t[c21 a(u' - u)2 + c03 3a(v' - v)2]

: [i+ 'C2, a~ud _ u)2 + 'c03 3a(Y' - 0)2]

nB/2 mo1/2

nemB + imB c21 a f u' 2 du' + inB c03 .3a f v' 2 dv'
-nr/2 -ro/2

"nBma + Q13 c2 1 an8/12 + in, 3a ms/12
0 0 B 21 03

" nmB[1 +1 c21 ano/12 + Ic03 amn2/4]

"n~mB exp[c2 1 an2/12 + c03 am2/4] . (7-27)
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Therefore for Oe with terms up to cubic over B, the phase of Soa(U, v)
is given approximately by

oa(u, v) . arg[#(O, a)] + c0 1 a - c02 a2 + c03 a V + m/4)

+ c2 1 an/12 + 2r Poa(U, v) (7-28)

(where the cjk are functions of u and v).

If we ignore the fact that there are higher-order phase errors and
take this phase to be due to the linear component only, then the phase

difference across B will be taken to be

(mB/a) eoa(u, v) m (mB/a) argj[#(O, a)] + Cot.aB - c02 na, a

SCo 3 mB(a + M/)+ c2l nB! 2

+ (mB/a) 2r Poa(U, v) . (7-29)

At this point consider what the actual phase difference across the
center of B is in the v direction. For u - u, we have, from Eq.
(7-24),

Se(O, v t m0/2) Oe(Ul v) + cOl(± B/2) + c02 (± mB/2) 2 + c03 (t IuB/2)3.
.(7-30)

Therefore

*¢e(U, v + mB/2) - Oe(u, v - ma/2 ) - c01 maB + c03 MB/8 . (7-31)

The residual error, the difference between Eqs. (29) and (31), ignoring
(MB/a) arg[/(O, a)] and the 21rp'terms, is
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a me(a 2 + n2 8
res. error c - c0 2 m + 03 B+ /8) + c2 1  2 n /12 . (7-32)

Of these terms, -c02mBa will probably be the worst since its
coefficient will ordinarily be the largest.

The last source of error that we will consider here are the odd-
function errors in Eq. (7-26) that were dropped because they added
nothing to the phase-error estimate. Their deleterious effect is to
reduce the magnitude of the summation over B, thereby reducing the
signal-to-noise ratio. For example, the first term taken by itself
would yield

hB/Z
Y exp llClla(u'-u)J M n J exp(iciiau') du'
B enB/2

Ir mBnB sinc[cllanB/(2r)] (7-33)

which would go to zero for c1 1an- 2r. Therefore, the contribution of
such terms to Oe over B must be considerably less than 2Y in order to
avoid a significant locs in signal-to-noise ratio.

To minimize the residual phase errors in Eq. (7-32) due to higher-
order phase errors, we would want to choosessmall values for mB and n,
whereas to minimize the residual phase errors due to the statistics
[see Eq. (7-16)] we would want to maximize mB and B. The optimum
trade-off, which depends on the spatial statistics of 0e' should be
determined. Another possibility is to perform the phase error
correction recursively. Depending upon how Oe is corrected in-between
the coarse sampling grid (i.e. what form of interpolation is used),
some of the higher-order terms may be reduced. Then a second pass of
the algorithm may improve the result.
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It is also possible to reduce these errors substantially with more

complex processing. If we use the convolutional method for computing

*Soa(u, v) at the finer sampling grid, then with closely-spaced samples
of Soa(u, v) we can estimate the quadratic coefficient c0 2 'and

compensate for it appropriately. Extensions to this approach could be
used to reduce other higher-order terms as well, including cross-terms
such as c2 1. The area of optimally using the data Sba(U, v) to

estimate #e(u v) is probably a very rich area in which great
improvements could be made. One should investigate least-squares and

bispectrum-like 'approaches, for 'example.

In the derivations given' here we estimated edge-to-edge phase

errors across the regions B, but then corrected them on a center-to-
center basis. Therefore the correction equations need to be modified

to account for this effect.

7.2 COMPUTER SIMULATION AND RECONSTRUCTIONEXPERIMENTS

Based on the theory presented in Section 7.1, three types of

spatial-frequency summations were implemented, as illustrated in Figure

7-1.

Given Soa(u,v) and Sh,(U,V), estimates of phase error differences
from the integrations, the method we used for reconstructing the phase
error was the complex exponential phase reconstruction algorithm shown

in Figure 7-2, which is taken from Reference 7.2. In that figure PmnA

is equivalent to exp[i'e(m,n)], Dumn is equivalent to Sbo(u,v), and
Dvmn is equivalent to Soa(u,v). First a simple product (phase
summation) is performed along each of the two axes, then the interior

points are built up recursively using a summation over two paths. Next
several iterations are performed. , In one iteration, each value is'
replaced by a summation of values taken from the four nearest
neighbors. The order of the selection of the values is in an outward

spiral: first a clockwise spiral, then a counterclockwise spiral. In
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2-D SHEAR AVERAGING

INTEGRATION GEOMETRIES

M

Case 1I mB

Integrate over 1 x iN.

Using each pixel, M

Reconstruct M x M array. G(u,v) G (uv-a) G(u,v) G*(u-b,v)

For S a(UoV) v For Sbo(UV)

Fo r S (uII II)

Case2 m2 MB

Integrate over mB6 x MBO0

Using each pixel,

Reconstruct M x M array, G(uv) G*(u,v-a) G(uv) G*(u.b,v)

Case 3

Integrate over mB5 X MB (like Case 2).

Using each m a x m 8th pixel,

Reconstruct (M/mr) x (M/mB) array from (mB/a) Soa and (m8/a) SbQ.

Interpolate to M x M array

FIGURE 7-1. INTEGRATION GEOMETRIES FOR 2-0 SHEAR AVERAGING*
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COMPLEX EXPONENTIAL PHASE
RECONSTRUCTION

• " • ~P33 .,"'

D,,22 DVu23 "
D 1

U2v2

P21$ P22~ P23~ P24

Pi is Frl-? 13 0

First estimate:

P11 1wi
P12.. Dull1 Pl11/1P*121
P22 m. (Du2l1 P21 D DIl2 P 12)/1 P221
etc.

Iteration Example:

P23 -,(Du22 P22 + Dv13 P13'
+ D* 23 'P24 + D* 23 P33]/1P231

etc.

FIGURE 7-2. COMPLEX EXPONENTIAL .PHASE RECONSTRUCT.R.
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Figure 7-2, the division by IPmnI on the right-hand side is to be
interpreted as: first compute the right-hand side without IPmnl, then
divide it by its magnitude to arrive at a pure-phase function (a phase
exponential).

Figure 7-3 shows a case for which the object is a delta function
and the phase error is that shown in Figure 7-3(a), with o - r/2 and
corl-30. For display of phases, -r is black, r is white, and the phase
is wrppped (modulo 2r). The impulse response for this phase error is
shown in Figure 7-3(g). The phases and magnitudes of Soa and Sbo for
Case 1 integration (see Figure 7-1) with m, a 8 are shown in Figures
7-3(b)-(e). The phase-error estimate, reconstructed by shear averaging
in conjunction with the reconstructor shown in Figure 7-2, is shown in
Figure 7-3(f). From this it can be seen that the reconstructed phase
error is similar to a smoothed version of the true phase error. The
smoothing is due to the value of mB, Figure 7-3(h) shows the impulse
response due to the residual phase error gotten by subtracting the
estimated phase error from the true phase error. From this it is seen
that subtracting the phase error estimate removes most of the error.

Figure 7-4(a) shows the complex-valued object used for the
experiments that follow. Figures 7-4(b), (c) show the magnitude and
phase of the Fourier transform of the object. Figure 7.4(d) shows the
added phase error (u - r/2 and corl - 30). Figure 7-4(q) shows the
given noisy phase C(c) plus (d), modulo 2r], and Figure 7-4(f) shows
the blurred image obtained using the noisy phase.

Figure 7-5 shows a reconstruction experiment similar to that shown
in Figure 7-2, with a case-I integration (see Figure 7-1) with m, - 8.
Comparison of the original object in (a) with the blurred image in (c)
and the reconstructed image in (h) shows that 2-D shear averaging
corrected some of the phase error, but left a large residual phase
error. Figure 7-6 shows the same thing for m. - 32, and Figure 7-7
shows the same thing for a case-2 integration (see Figure 7-1) for m,
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FIGURE 7-3. PHASE ERROR RECONSTRUCTION BY 2-D SHEAR AVERAGING FOR A
POINT-SOURCE OBJECT. (a) Phase error function (modulo 2w); (b), (c)
phase of S- S ; (d), (e) magnitude of S- S ; (f) reconstructed
phase; (g) Tmpu ?e response from (a); (h) b~mpu¶'e response from (a)
minus (f).
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FIGURE 7-4. DArA USED IN 2-D SHEAR AVERAGING RECONSTRUCTION
EXPERIMENTS. (a) Object; (b), (c) object's Fourier magnitude and
phase; (d) phase error; (e) noisy phase estimate [(c) plus (d), modulo
2%-]; (f) image blurred by the phase error.
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FIGURE 7-5. PHASE ERROR CORRECTION BY 2-D SHEAR AVERAGING. Case-1
integration and m - 8 were used. (a) The object; (b) the phase error;
(c) the blurred image; (d), (e) the phase of S , S ; (f), (g) the
magnitude of Sbo, Soa; (h) the iiage reconstrhUtedogfter 2-D shear
averaging.
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FIGURE 7-7. PHASE ERROR CORRECTION BY 2-D SHEAR AVERAGING. Same as
Figure 7-5, except case-2 integration and mB = 32 was used.

157



16. Of these, the case-1 integration with m, - 32 appears to yield the
best image for this example. Larger values of mB cause the integration
to be over an area over which the phase error varies too wildly,
whereas smaller values of m, cause the integration to be over a smaller
region, increasing the statistical error. Comparing Figure 7- 5(c)
with 7-5(h) shows that 2-D shear averaging improves the quality of the
image substantially, but far from perfectly.
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8.0 SPACE OBJECT IMAGING SENSORS

This section describes a first rough cut at comparing the numerous

potential sensors for imaging space objects in earth orbit from the

ground using short (visible or near-IR) wavelengths. Because no
extensive investigations were performed to compare the various imaging

approaches, what is contained in this section should not be considered

to be a recommendation of one approach over another; rather, this

should be viewed as an off-the-cuff listing of attributes and as only a
first step toward comparing the various approaches. There is a need to

perform a thorough analysis comparing these numerous candidate systems;
this was beyond the scope of the present program, but it is recommended
that such an analysis be performed to establish the basis for

development of future fine-resolution imaging systems. This comparison

is done primarily by means of the three matrix charts shown in Figures

8-1 to 8-3. Figure 8-1 'covers the case of using only laser

illumination, Figure 8-2 covers the case of using only incoherent

illumination (or emissive objects), and Figure 8-3 covers mixed-

coherence (coherent/incoherent) methods and other miscellaneous

approaches. Further additions to the matrix could be made.

The Near-Team Feasibility column indicates our opinion of the

feasibility of performing a successful experiment with present-day
technology using an existing single-aperture telescope within the next

six months. A successful experiment would be one in which the

resolution of the reconstructed image is several times better than (X

R/ro) at the object without the use of adaptive optics, where X -

wavelength, R - range to targo' and ro - Fried's parameter (-10cm).
A The Large Distributed Aperture column comments on' the difficulty of

putting together electro-optical hardware for a large distributed array

of apertures suitable for imaging geosynchronous objects.
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8.1 INCOHERENT-ONLY SENSORS

Several incoherent approaches, including both aperture-plane and

focal-plane (astronomical speckle) interferometry are feasible. Of
these, the one farthest along in development i-s speckle interferometry

(13) using either Knox-Thompson or triple correlation to obtain an

initial image (or Fourier phase) estimate which is refined by the
iterative transform algorithm. Thiswould yield an incoherent image of

the object. It requires hundreds to thousands of frames with different

realizations of atmospheric turbulence, and requires measurements on a
reference star through an atmosphere having the same statistics as the

atmosphere through which the object is imaged. It is restricted to

pre-dawn or post-dusk imaging while the sensor is in night-time but the

object is sun illuminated.

An extension of this method to large distributed apertures for

imaging geosynchronous satellites would be difficult due to a

requirement of a common focal plane.

8.2 COHERENT-ONLY SENSORS

For imaging with coherent laser illumination only, all the

approaches are risky. The least risky, in terms of image

reconstruction, would be a combination of Laser Dual Plane (C5) with

Imaging Correlography (C3). Figure 8-4 shows a flowchart of the data
processing for this combined approach. Imaging Correlography is the

collection of multiple aperture-plane speckle in'ensity patterns, power

spectrum (or autocorrelation) averaging, and image reconstruction by

the iterative transform algorithm to ,rrive at a moderate-resolution

(pm) incoherent image. The resolution is limited primarily by

statistical averaging noise due to a finite number of realizations of

the speckle patterns. The Laser Dual Plane method is the collection of

both an aperture-plane and a focal-plane speckle intensity pattern, and

processing by a Gerchberg-Saxton type algorithm to arrive at the
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aperture-plane complex field. This gives the field, F - IFlexp(i#),
scattered by the object times a phase factor, exp(io.), due to
atmospheric turbulence; the result therefore has the degraded phase

#+Oa" Reconstruction algorithms described in Sections 6 and 7 would be
appropriate for correcting the phase error, Oa'

If all the aperture-plane snapshots are processed via the Imaging
Correlography approach into a moderate-resolution image, then it should
be possible to use that image, in conjunction with algorithms for
setting upper limits ("locator sets") on the support of the object from
the support of its autocorrelation, to determine a reasonably tight
support constraint on the object.

The support constraint from Imaging Correlography plus the degraded
phase from the Dual-Plane approach should make diffraction-limited
resolution (Pd) coherent image reconstruction from a single snapshot of
aperture-plane intensity easier (although the question of just how easy
it would be has not yet been investigated). A priori knowledge of a
support constraint, which might be known for a "friendly" object, would
also make image reconstruction easier. With the collection of multiple
frames, one has the option of choosing which snapshot to process, and
the selection of one for which a strong glint is present and favorably
positioned would make reconstruction easier still. Selection of an
object that is highly noncunvex would also help. Noncoherent averaging
of N reconstructed images would decrease the speckle contrast to N"1/ 2,
approximating an incoherent image for this and all the other coherent

* approaches that follow.

This approach would scale well for large distributed apertures
since the two detection planes and the wavefront sensing could be done
independently for each aperture; however, the reconstruction of the
coherent images could suffer from the sparseness of the array.
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8.3 COMBINED DUAL-PLANE AND INCOHERENT ATMOSPHERE SENSING

The approach employing active illumination that is most likely to

succeed is (Ml), a combination of the Laser Dual-Plane Sensor (C5) with

an Incoherent Atmospheric Sensor. The Laser Dual-Plane Sensor, as

described above, yields the degraded phase 0+0a. A wavefront sensor

such as a shearing interferometer, operating with incoherent light from

the object, yields the atmospheric phase, 0a. Subtraction of the

atmospheric phase from the degraded phase yields #, the phase due to

the object. Then an image is reconstructed by inverse Fourier
transformation of IFlexp(i#).

This combined method involves fairly complex hardwares two

detector planes for the laser wavelength plus a wavefront sensor for
the incoherent light. Furthermore it requires. both laser and

incoherent (e.g. sun) illumination. However, the phase retrieval part,
finding the aperture-plane field by the Gerchberg-Saxton algorithm, is

low risk and the wavefront sensor is already in place as part of the CI

system at AMOS.

This approach would scale well for large distributed apertures;

however phase retrieval will be needed for inter-aperture phase errors.

8.4 LASER FOCAL PLANE WITH INCOHERENT ATMOSPHERE SENSOR

This method (M2) is the same as the method above (Ml) except that

(A) the aperture plane detector is eliminated and (B) the ordinary

circular aperture is masked to form an asymmetric-shaped aperture.

Then instead of using the Gerchberg-Saxton algorithm to determine the
aperture-plane field from the aperture and focal plane intensities, one

uses the iterative transform algorithm to determine the aperture-plane
field from the focal plane intensity and the aperture-shape support

constraint. The atmospheric phase is subtracted and the image is

formed as in (Ml) above.
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8.5 CONVENTIONAL LASER IMAGING APPROACH

Although it is unlikely to be practical, we have conceived of a

means whereby it would be possible to reconstruct a diffraction-limited

image from a single focal-plane intensity array in coherent light. It
is like the Laser Conventional approach (Cl,) but with a long.coherence

length laser with the addition of an aperture of special shape. First,

as in (M2) above, one uses the iterative transform algorithm to
reconstruct the aperture-plane field from the focal plane intensity and
the aperture-shape support constraint. Then we use the iterative

transform algorithm to reconstruct a coherent image from the modulus of
the reconstructed aperture-plane field and a support constraint on the

object. This method would require a much higher data signal-to-noise

ratio than method (Ml) or (M2) above, since the modulus of the
aperture-plane field must be known more accurately for the iterative
reconstruction of the image than if the phase is known for simple
Fourier-transform reconstruction of the image. Nevertheless, this two-

stage reconstruction approach is theoretically very intriguing.
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